【題目】某商場(chǎng)銷售一種成本為每件30元的商品,銷售過(guò)程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似看作一次函數(shù)y=-10x+600,商場(chǎng)銷售該商品每月獲得利潤(rùn)為w(元).
(1)求w與x之間的函數(shù)關(guān)系式;
(2)如果商場(chǎng)銷售該商品每月想要獲得2000元的利潤(rùn),那么每月成本至少多少元?
(3)為了保護(hù)環(huán)境,政府部門(mén)要求用更加環(huán)保的新產(chǎn)品替代該商品,商場(chǎng)銷售新產(chǎn)品,每月的銷量與銷售價(jià)格之間的關(guān)系與原產(chǎn)品的銷售情況相同,新產(chǎn)品的成本每件32元,若新產(chǎn)品每月的銷售量不低于200件時(shí),政府部門(mén)給予每件4元的補(bǔ)貼,試求定價(jià)多少元時(shí),每月銷售新產(chǎn)品的利潤(rùn)最大?求出最大的利潤(rùn)。

【答案】
(1)解:w=(x﹣30)(﹣10x+600)=﹣10x2+900x﹣18000
(2)解:由題意得,﹣10x2+900x﹣18000=2000,解得:x1=40,x2=50,當(dāng)x=40時(shí),成本為30×(﹣10×40+600)=6000(元),當(dāng)x=50時(shí),成本為30×(﹣10×50+600)=3000(元),∴每月想要獲得2000元的利潤(rùn),每月成本至少3000元
(3)解:當(dāng)y<200時(shí),即:﹣10x+600<200,解得:x>40,w=(x﹣32)(﹣10x+600)=﹣10(x﹣46)2+1960,∵a=﹣10<0,x>40,∴當(dāng)x=46時(shí),w最大值=1960(元);
當(dāng)y≥200時(shí),即:﹣10x+600≥200,解得:x≤40,w=(x﹣32+4)(﹣10x+600)=﹣10(x﹣44)2+2560,∵a=﹣10<0,∴拋物線開(kāi)口向下,當(dāng)32<x≤40時(shí),w隨x的增大而增大,∴當(dāng)x=40時(shí),w最大值=2400(元),∵1960<2400,∴當(dāng)x=40時(shí),w最大.
答:定價(jià)每件40元時(shí),每月銷售新產(chǎn)品的利潤(rùn)最大,最大利潤(rùn)為2400元.
【解析】(1)利用利潤(rùn)法則:?jiǎn)渭麧?rùn)銷量=利潤(rùn),可列出函數(shù)表達(dá)式;(2)根據(jù)函數(shù)關(guān)系式的特殊值,列出方程,解方程求出結(jié)果;(3)根據(jù)銷量進(jìn)行分類討論,分別列出分段函數(shù),在自變量的取值范圍內(nèi),根據(jù)二次函數(shù)的單調(diào)性,求出最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)PBC邊上,利用直尺和三角板畫(huà)出圖形.

1)過(guò)點(diǎn)P作直線a與線段AB平行,交AC于點(diǎn)E;過(guò)點(diǎn)P作直線b與線段BC垂直,交AB于點(diǎn)F.

2)在(1)的條件下,判斷∠B與∠FPE的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣1和3,則下列結(jié)論正確的是(  )

A.2a﹣b=0
B.a+b+c>0
C.3a﹣c=0
D.當(dāng)a= 時(shí),△ABD是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,CA=CB,MN分別AB上的兩動(dòng)點(diǎn),且∠MCN=45°,下列結(jié)論:;CM2CN2=NBNAMBMAAM2+BN2=MN2;SCAM+SCBN=SCMN,其中正確的有(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過(guò)網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:

(1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,求出D點(diǎn)坐標(biāo)
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開(kāi)圖,求該圓錐的底面半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,數(shù)軸上標(biāo)出若干個(gè)點(diǎn),每相鄰兩點(diǎn)相距一個(gè)單位長(zhǎng)度,點(diǎn)A,B,C,D對(duì)應(yīng)的數(shù)分別是數(shù)a,b,c,d,且d-2a=10,那么數(shù)軸的原點(diǎn)應(yīng)是( )

A.點(diǎn)A
B.點(diǎn)B
C.點(diǎn)C
D.點(diǎn)D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在數(shù)軸上有兩點(diǎn)A、B,回答下列問(wèn)題
(1)寫(xiě)出A、B兩點(diǎn)所表示的數(shù),并求線段AB的長(zhǎng);
(2)將點(diǎn)A向左移動(dòng)個(gè)單位長(zhǎng)度得到點(diǎn)C,點(diǎn)C表示的數(shù)是多少,并在數(shù)軸上表示出來(lái)
(3)數(shù)軸上存在一點(diǎn)D,使得C、D兩點(diǎn)間的距離為8,請(qǐng)寫(xiě)出D點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雅安地震發(fā)生后,全國(guó)人民抗震救災(zāi),眾志成城,值地震發(fā)生一周年之際,某地政府又籌集了重建家園的必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車(chē)型供選擇,每輛車(chē)的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車(chē)均滿載)

車(chē)型

汽車(chē)運(yùn)載量(噸/輛)

5

8

10

汽車(chē)運(yùn)費(fèi)(元/輛)

400

500

600

(1)全部物資可用甲型車(chē)8輛,乙型車(chē)5輛,丙型車(chē) 來(lái)運(yùn)送.

(2)若全部物資都用甲、乙兩種車(chē)型來(lái)運(yùn)送,需運(yùn)費(fèi)8200元,問(wèn)分別需甲、乙兩種車(chē)型各幾輛?

(3)為了節(jié)省運(yùn)費(fèi),該地政府打算用甲、乙、丙三種車(chē)型同時(shí)參與運(yùn)送,已知它們的總輛數(shù)為14輛,你能分別求出三種車(chē)型的輛數(shù)嗎?此時(shí)的運(yùn)費(fèi)又是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形 ABCD 中,∠A=160°,∠B=50°,∠ADC、∠BCD 的平分線相交于點(diǎn)E,則∠CED=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案