【題目】某工廠生產(chǎn)A、B兩種產(chǎn)品共50件,其生產(chǎn)成本與利潤如下表:
A種產(chǎn)品 | B種產(chǎn)品 | |
成本 (萬元/件) | 0.6 | 0.9 |
利潤 (萬元/件) | 0.2 | 0.4 |
若該工廠計劃投入資金不超過40萬元,且希望獲利超過16萬元,問工廠有哪幾種生產(chǎn)方案?哪種生產(chǎn)方案獲利潤最大?最大利潤是多少?
【答案】工廠有三種生產(chǎn)方案:①生產(chǎn)A種產(chǎn)品17件,生產(chǎn)B種產(chǎn)品33件;②生產(chǎn)A種產(chǎn)品18件,生產(chǎn)B種產(chǎn)品32件;③生產(chǎn)A種產(chǎn)品19件,生產(chǎn)B種產(chǎn)品31件。方案①獲利潤最大,最大利潤是16.6萬元。
【解析】
一元一次不等式組和一次函數(shù)的應(yīng)用。
根據(jù)題目的已知條件建立不等式組的數(shù)學(xué)模型和一次函數(shù)的數(shù)學(xué)模型求解。
解:設(shè)生產(chǎn)A種產(chǎn)品x件,則B種產(chǎn)品為50-x件,
根據(jù)題意有:
不等式組的解集為:。
∵x為整數(shù),∴x=17或18或19。
生產(chǎn)方案如下:①生產(chǎn)A種產(chǎn)品17件,生產(chǎn)B種產(chǎn)品33件;
②生產(chǎn)A種產(chǎn)品18件,生產(chǎn)B種產(chǎn)品32件;
③生產(chǎn)A種產(chǎn)品19件,生產(chǎn)B種產(chǎn)品31件。
設(shè)利潤為W,則,
∵-0.2<0,∴W隨x的增大而減小。∴當(dāng)x=17時,。
答:工廠有三種生產(chǎn)方案:①生產(chǎn)A種產(chǎn)品17件,生產(chǎn)B種產(chǎn)品33件;②生產(chǎn)A種產(chǎn)品18件,生產(chǎn)B種產(chǎn)品32件;③生產(chǎn)A種產(chǎn)品19件,生產(chǎn)B種產(chǎn)品31件。方案①獲利潤最大,最大利潤是16.6萬元。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個一次函數(shù)y=ax+b和y=bx+a在同一直角坐標(biāo)系中的圖象可能是( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的頂點(diǎn)A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次変換,如果這樣連續(xù)經(jīng)過2016次變換后,等邊△ABC的頂點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,∠AOB=90°,點(diǎn)C在射線OA上,CD∥OE.
(1)如圖1,若∠OCD=120°,求∠BOE的度數(shù);
(2)把“∠AOB=90°”改為“∠AOB=120°”,射線OE沿射線OB平移,得O′E,其他條件不變,(如圖2所示),探究∠OCD、∠BO′E的數(shù)量關(guān)系;
(3)在(2)的條件下,作PO′⊥OB垂足為O′,與∠OCD的平分線CP交于點(diǎn)P,若∠BO′E=α,請用含α的式子表示∠CPO′(請直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)前往B城,在整個行程中,兩車離開A城的距離y與t的對應(yīng)關(guān)系如圖所示:
(1)A、B兩城之間距離是多少千米?
(2)求乙車出發(fā)多長時間追上甲車?
(3)直接寫出甲車出發(fā)多長時間,兩車相距20千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B處與燈塔P之間的距離為( )
A.60海里
B.45海里
C.20 海里
D.30 海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點(diǎn)E,FA⊥AE,交CB延長線于點(diǎn)F,則EF的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】早晨,小明步行到離家900米的學(xué)校去上學(xué),到學(xué)校時發(fā)現(xiàn)眼鏡忘在家中,于是他立即按原路步行回家,拿到眼鏡后立即按原路騎自行車返回學(xué)校.已知小明步行從學(xué)校到家所用的時間比他騎自行車從家到學(xué)校所用的時間多10分鐘,小明騎自行車速度是步行速度的3倍.
(1)求小明步行速度(單位:米/分)是多少;
(2)下午放學(xué)后,小明騎自行車回到家,然后步行去圖書館,如果小明騎自行車和步行的速度不變,小明步行從家到圖書館的時間不超過騎自行車從學(xué)校到家時間的2倍,那么小明家與圖書館之間的路程最多是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時,矩形AEBD是正方形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com