【題目】如圖,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)P是AD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)A關(guān)于直線BP的對(duì)稱點(diǎn)是點(diǎn)Q,連接PQ、DQ、CQ、BQ,設(shè)AP=x.

(1)BQ+DQ的最小值是_______,此時(shí)x的值是_______;

(2)如圖,若PQ的延長(zhǎng)線交CD邊于點(diǎn)E,并且CQD=90°

求證:點(diǎn)E是CD的中點(diǎn); 求x的值.

(3)若點(diǎn)P是射線AD上的一個(gè)動(dòng)點(diǎn),請(qǐng)直接寫出當(dāng)CDQ為等腰三角形時(shí)x的值.

【答案】(1),;(2) 理由詳見解析;;(3) 2﹣或2+

【解析】

試題分析:(1)根據(jù)兩點(diǎn)之間,線段最短可知,點(diǎn)Q在線段BD上時(shí)BQ+DQ的值最小,是BD的長(zhǎng)度,利用勾股定理即可求出;再根據(jù)PDQ是等腰直角三角形求出x的值;

(2) 由對(duì)稱可知AB=BQ=BC,因此BCQ=BQC.根據(jù)BQE=BCE=90°,可知EQC=ECQ,從而EQ=EC.再根據(jù)CQD=90°可得DQE+CQE=90°, QCE+QDE=90°,而EQC=ECQ, 所以QDE=DQE,從而EQ=ED.易得點(diǎn)E是CD的中點(diǎn);在RtPDE中,PE= PQ+QE=x+,PD=1﹣x,PQ=x,根據(jù)勾股定理即可求出x的值.

(3) CDQ為等腰三角形分兩種情況:CD為腰,以點(diǎn)C 為圓心,以CD的長(zhǎng)為半徑畫弧,兩弧交點(diǎn)即為使得CDQ為等腰三角形的Q點(diǎn); CD為底邊時(shí),作CD的垂直平分線,與的交點(diǎn)即為CDQ為等腰三角形的Q點(diǎn),則共有 3個(gè)Q點(diǎn),那么也共有3個(gè)P點(diǎn),作輔助線,利用直角三角形的性質(zhì)求之即得.

試題解析:(1),

(2)證明:在正方形ABCD中,

AB=BC,A=BCD=90°.

Q點(diǎn)為A點(diǎn)關(guān)于BP的對(duì)稱點(diǎn),

AB=QB,A=PQB=90°,

QB=BC,BQE=BCE,

∴∠BQC=BCQ,

∴∠EQC=EQB﹣CQB=ECB﹣QCB=ECQ,

EQ=EC.

在RtQDC中,

∵∠QDE=90°﹣QCE,

DQE=90°﹣EQC,

∴∠QDE=DQE,

EQ=ED,

CE=EQ=ED,即E為CD的中點(diǎn).

②∵AP=x,AD=1,

PD=1﹣x,PQ=x,CD=1.

在RtDQC中,

E為CD的中點(diǎn),

DE=QE=CE=,

PE=PQ+QE=x+

,

解得 x=

(3)CDQ為等腰三角形時(shí)x的值為2-,,2+

如圖,以點(diǎn)B為圓心,以AB的長(zhǎng)為半徑畫弧,以點(diǎn)C為圓心,以CD的長(zhǎng)為半徑畫弧,兩弧分別交于Q1,Q3.此時(shí)CDQ1CDQ3都為以CD為腰的等腰三角形.作CD的垂直平分線交弧AC于點(diǎn)Q2,此時(shí)

CDQ2以CD為底的等腰三形.

以下對(duì)此Q1,Q2,Q3.分別討論各自的P點(diǎn),并求AP的值.

討論Q:如圖作輔助線,連接BQ1、CQ1,作PQ1BQ1交AD于P,過點(diǎn)Q1,作EFAD于E,交BC于F.

∵△BCQ1為等邊三角形,正方形ABCD邊長(zhǎng)為1,

,

在四邊形ABPQ1中,

∵∠ABQ1=30°,

∴∠APQ1=150°,

∴△PEQ1為含30°的直角三角形,

PE=

AE=,

x=AP=AE-PE=2-

討論Q2,如圖作輔助線,連接BQ2,AQ2,過點(diǎn)Q2作PGBQ2,交AD于P,連接BP,過點(diǎn)Q2作EFCD于E,交AB于F.

EF垂直平分CD,

EF垂直平分AB,

AQ2=BQ2

AB=BQ2,

∴△ABQ2為等邊三角形.

在四邊形ABQP中,

∵∠BAD=BQP=90°, ABQ=60°,

∴∠APE=120°

∴∠EQ2G=DPG=180°-120°=60°,

EG=,

DG=DE+GE=-1,

PD=1-,

x=AP=1-PD=

對(duì)Q3,如圖作輔助線,連接BQ1,CQ1,BQ3,CQ3,過點(diǎn)Q3作BQ3PQ3,交AD的延長(zhǎng)線于P,連接BP,過點(diǎn)Q1,作EFAD于E,此時(shí)Q3在EF上,不妨記Q3與F重合.

∵△BCQ1為等邊三角形,BCQ3為等邊三角形,BC=1,

,,

在四邊形ABQ3P中

∵∠ABF=ABC+CBQ3=150°

∴∠EPF=30°,

EP=,EF=

AE=

x=AP=AE+PE=+2.

綜上所述,CDQ為等腰三角形時(shí)x的值為2﹣,2+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山西。┪沂∧程O果基地銷售優(yōu)質(zhì)蘋果,該基地對(duì)需要送貨且購(gòu)買量在2000kg﹣5000kg(含2000kg5000kg)的客戶有兩種銷售方案(客戶只能選擇其中一種方案):

方案A:每千克5.8元,由基地免費(fèi)送貨.

方案B:每千克5元,客戶需支付運(yùn)費(fèi)2000元.

(1)請(qǐng)分別寫出按方案A,方案B購(gòu)買這種蘋果的應(yīng)付款y(元)與購(gòu)買量xkg)之間的函數(shù)表達(dá)式;

(2)求購(gòu)買量x在什么范圍時(shí),選用方案A比方案B付款少;

(3)某水果批發(fā)商計(jì)劃用20000元,選用這兩種方案中的一種,購(gòu)買盡可能多的這種蘋果,請(qǐng)直接寫出他應(yīng)選擇哪種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著我國(guó)的發(fā)展與強(qiáng)大,中國(guó)文化與世界各國(guó)文化的交流與融合進(jìn)一步加強(qiáng).為了增進(jìn)世界各國(guó)人民對(duì)中國(guó)語言和文化的理解,在世界各國(guó)建立孔子學(xué)院,推廣漢語,傳播中華文化.同時(shí),各國(guó)學(xué)校之間的交流活動(dòng)也逐年增加.在與國(guó)際友好學(xué)校交流活動(dòng)中,小敏打算制做一個(gè)正方體禮盒送給外國(guó)朋友,每個(gè)面上分別書寫一種中華傳統(tǒng)美德,一共有仁義禮智信孝六個(gè)字.如圖是她設(shè)計(jì)的禮盒平面展開圖,那么字對(duì)面的字是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點(diǎn)O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線OM上有三點(diǎn)A、B、C,滿足OA=20cm,AB=60cm,BC=10cm,點(diǎn)P從點(diǎn)O出發(fā),沿OM方向以1cm/秒的速度勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)在線段CO上向點(diǎn)O勻速運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)O時(shí),點(diǎn)P、Q停止運(yùn)動(dòng).

(1)若點(diǎn)Q運(yùn)動(dòng)速度為2cm/秒,經(jīng)過多長(zhǎng)時(shí)間P、Q兩點(diǎn)相遇?

(2)當(dāng)P在線段AB上且PA=3PB時(shí),點(diǎn)Q運(yùn)動(dòng)到的位置恰好是線段AB的三等分點(diǎn),求點(diǎn)Q的運(yùn)動(dòng)速度;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線OA的方向是北偏東20°,射線OB的方向是北偏西40°,ODOB的反向延長(zhǎng)線.若OC是∠AOD的平分線,則∠BOC=_____°,射線OC的方向是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高身體素質(zhì),有些人選擇到專業(yè)的健身中心鍛煉身體,某健身中心的消費(fèi)方式如下:

消費(fèi)卡

消費(fèi)方式

普通卡

35元/次

白金卡

280元/張,憑卡免費(fèi)消費(fèi)10次再送2次

鉆石卡

560元/張,憑卡每次消費(fèi)不再收費(fèi)

以上消費(fèi)卡使用年限均為一年,每位顧客只能購(gòu)買一張卡,且只限本人使用
(Ⅰ)若每年去該健身中心6次,應(yīng)選擇哪種消費(fèi)方式更合算?
(Ⅱ)設(shè)一年內(nèi)去該健身中心健身x次(x為正整數(shù)),所需總費(fèi)用為y元,請(qǐng)分別寫出選擇普通消費(fèi)和白金卡消費(fèi)的y與x的函數(shù)關(guān)系式;
(Ⅲ)若某位顧客每年去該健身中心健身至少18次,請(qǐng)通過計(jì)算幫助這位顧客選擇最合算的消費(fèi)方式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把邊長(zhǎng)為3的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到正方形AB′C′D′,邊BCD′C′交于點(diǎn)O,則四邊形ABOD′的周長(zhǎng)是( )

A. 6B. 6C. 3D. 3+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=4x+4x、y軸分別相交于點(diǎn)A、B,四邊形ABCD是正方形,拋物線C,D兩點(diǎn),且C為頂點(diǎn),則a的值為_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案