【題目】如圖,已知AB=AC,AD=AE,BECD相交于O.圖中全等的三角形有( 。⿲(duì).

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

首先利用SAS定理證明△ADC≌△AEB,進(jìn)而得到DC=EB,再證明△DBC≌△ECB,然后證明△DOB≌△EOC.

∵在△ADC和△AEB中,


∴△ADC≌△AEB(SAS),
∴DC=EB,
∵AB=AC,AD=AE,
∴DB=EC,


在△DBC和△ECB中,

,
∴△DBC≌△ECB(SSS),
∴∠DCB=∠EBC,
∵AB=AC,
∴∠ACB=∠ABC,
∴∠ACB-∠DCB=∠ABC-∠EBC,
即∠DBO=∠ECO,
在△DOB和△EOC中,
,
∴△DOB≌△EOC(AAS).
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機(jī),某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.

(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?

(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?

(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點(diǎn)、數(shù)b的點(diǎn)到原點(diǎn)的距離相等.

(1)用“>”“=”“<”填空:b   0,a+b   0,ac   0,bc   0,a+c   0;

(2)化簡|a+b|+|ac|﹣|b|+|a|+|c|+|a+c|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了拉動(dòng)內(nèi)需,全國各地汽車購置稅補(bǔ)貼活動(dòng)在2009年正式開始,某經(jīng)銷商在政策出臺(tái)前一個(gè)月共售出某品牌汽車的手動(dòng)型和自動(dòng)型共960臺(tái),政策出臺(tái)后的第一個(gè)月售出這兩種型號(hào)的汽車共1228臺(tái),其中手動(dòng)型和自動(dòng)型汽車的銷售量分別比政策出臺(tái)前一個(gè)月增長30%25%

1)在政策出臺(tái)前一個(gè)月,銷售的手動(dòng)型和自動(dòng)型汽車分別為多少臺(tái)?

2)若手動(dòng)型汽車每臺(tái)價(jià)格為8萬元,自動(dòng)型汽車每臺(tái)價(jià)格為9萬元.根據(jù)汽車補(bǔ)貼政策,政府按每臺(tái)汽車價(jià)格的5%給購買汽車的用戶補(bǔ)貼,問政策出臺(tái)后的第一個(gè)月,政府對(duì)這1228臺(tái)汽車用戶共補(bǔ)貼了多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校校園內(nèi)有一小山坡AB,經(jīng)測(cè)量,坡角∠ABC=30°,斜坡AB長為12米.為方便學(xué)生行走,決定開挖小山坡,使斜坡BD的坡比是1:3(即為CD與BC的長度之比).A,D兩點(diǎn)處于同一鉛垂線上,求開挖后小山坡下降的高度AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON∠AOC的平分線,OM∠BOC的平分線.

1)求∠MON的大小.

2)當(dāng)銳角∠AOC的大小發(fā)生改變時(shí),∠MON的大小是否發(fā)生改變?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)

(2)(3+)(3﹣)﹣(1﹣2

(3)我們已經(jīng)學(xué)習(xí)了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運(yùn)用十字相乘法,請(qǐng)從以下一元二次方程中任選一個(gè),并選擇你認(rèn)為適當(dāng)?shù)姆椒ń膺@個(gè)方程.

①x2﹣4x﹣1=0 ②x(2x+1)=8x﹣3 ③x2+3x+1=0 ④x2﹣9=4(x﹣3)

我選擇第幾個(gè)方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藥物研究單位試制成功一種新藥,經(jīng)測(cè)試,如果患者按規(guī)定劑量服用,那么服藥后每毫升血液中含藥量y(微克)隨時(shí)間x(小時(shí))之間的關(guān)系如圖所示,如果每毫升血液中的含藥量不小于20微克,那么這種藥物才能發(fā)揮作用,請(qǐng)根據(jù)題意回答下列問題:

(1)服藥后,大約   分鐘后,藥物發(fā)揮作用.

(2)服藥后,大約   小時(shí),每毫升血液中含藥量最大,最大值是   微克;

(3)服藥后,藥物發(fā)揮作用的時(shí)間大約有   小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AB=CD,分別以AB,CD為邊向外側(cè)作等邊三角形ABE和等邊三角形DCF,連接AF,DE.
(1)求證:AF=DE;
(2)若∠BAD=45°,AB=a,△ABE和△DCF的面積之和等于梯形ABCD的面積,求BC的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案