精英家教網 > 初中數學 > 題目詳情

【題目】某地區(qū)2014年投入教育經費2900萬元,2016年投入教育經費3509萬元.
(1)求2014年至2016年該地區(qū)投入教育經費的年平均增長率;
(2)按照義務教育法規(guī)定,教育經費的投入不低于國民生產總值的百分之四,結合該地區(qū)國民生產總值的增長情況,該地區(qū)到2018年需投入教育經費4250萬元,如果按(1)中教育經費投入的增長率,到2018年該地區(qū)投入的教育經費是否能達到4250萬元?請說明理由.
(參考數據: =1.1, =1.2, =1.3, =1.4)

【答案】
(1)

解:設增長率為x,根據題意2015年為2900(1+x)萬元,2016年為2900(1+x)2萬元.

則2900(1+x)2=3509,

解得x=0.1=10%,或x=﹣2.1(不合題意舍去).

答:這兩年投入教育經費的平均增長率為10%


(2)

解:2018年該地區(qū)投入的教育經費是3509×(1+10%)2=4245.89(萬元).

4245.89<4250,

答:按(1)中教育經費投入的增長率,到2018年該地區(qū)投入的教育經費不能達到4250萬元.


【解析】(1)一般用增長后的量=增長前的量×(1+增長率),2015年要投入教育經費是2900(1+x)萬元,在2015年的基礎上再增長x,就是2016年的教育經費數額,即可列出方程求解;
(2)利用(1)中求得的增長率來求2018年該地區(qū)將投入教育經費.本題考查了一元二次方程中增長率的知識.增長前的量×(1+年平均增長率)年數=增長后的量.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】先化簡,再求值:
﹣1)÷ ,其中x的值從不等式組 的整數解中選取.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖所示的網格中,線段AB和直線a如圖所示,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點均在格點上.

(1)在圖中畫出以線段AB為一邊的正方形 ABCD,且點C和點D均在格點上,

并直接寫出正方形 ABCD的面積為   

(2)在圖中以線段AB為一腰的等腰三角形ABE,點E在格點上,則滿足條件的點E_____ 個;

(3)在圖中的直線a上找一點Q,使得△QAB的周長最小.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,∠AOB . 求作:∠A′O′B′,使∠A′O′B′=AOB . 作法:

①以________為圓心,________為半徑畫。謩e交OA , OB于點C , D .

②畫一條射線O′A′,以________為圓心,________長為半徑畫弧,交O′A′于點C′,

③以點________為圓心________長為半徑畫弧,與第2步中所畫的弧交于點D′.

④過點________畫射線O′B′,則∠A′O′B′=AOB .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)如圖,以△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,試判斷△ABC△AEG面積之間的關系,并說明理由。

2)園林小路,曲徑通幽,如圖2所示,小路由白色的正方形理石和黑色的三角形理石鋪成.已知中間的所有正方形的面積之和是a平方米,內圈的所有三角形的面積之和是b平方米,這條小路一共占地多少平方米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置,點C1、C2C3x軸上,A1A2、A3在直線l,A1(0,1),A2 A1B1=45°,則點Bn的坐標為____________n的代數式表示,n為正整數)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算: +2sin60°+|3﹣ |﹣( ﹣π)0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,AB=3,BC=5,以點B為圓心,以任意長為半徑作弧,分別交BA、BC于點P、Q,再分別以P、Q為圓心,以大于 PQ的長為半徑作弧,兩弧在∠ABC內交于點M,連接BM并延長交AD于點E,則DE的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ab,ABC是等邊三角形,點A在直線a上,邊BC在直線b上,把ABC沿BC方向平移BC的一半得到A′B′C′(如圖①);繼續(xù)以上的平移得到圖②,再繼續(xù)以上的平移得到圖③,…;請問在第2018個圖形中等邊三角形的個數是_________

查看答案和解析>>

同步練習冊答案