【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置,點C1、C2、C3x軸上,A1、A2、A3在直線l,A1(0,1),A2 A1B1=45°,則點Bn的坐標(biāo)為____________n的代數(shù)式表示,n為正整數(shù));

【答案】(2n﹣1,2n1

【解析】

根據(jù)等腰直角三角形的性質(zhì)結(jié)合正方形的性質(zhì)可得出點B1的坐標(biāo),同理可得出點B2、B3、B4、…的坐標(biāo),再根據(jù)點的坐標(biāo)的變化即可找出點Bn的坐標(biāo)

A10,1,∴OA1= 1.

∵四邊形A1B1C1O為正方形,∴點B1的坐標(biāo)為(1,1).

A2 A1B1=45°,A2B1=A1B1=1,∴A2C1=2,∴點A2的坐標(biāo)為(1,2).

∵四邊形A2B2C2C1為正方形,∴點B2的坐標(biāo)為(3,2).

同理可得A3的坐標(biāo)為(3,4),B3的坐標(biāo)為(7,4),A4的坐標(biāo)為(7,8),B4的坐標(biāo)為(15,8),…,∴點Bn的坐標(biāo)為(2n1,2n1).

故答案為:2n1,2n1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線分別交AB,AC于點DE

1)若A=40°,求EBC的度數(shù);

2)若AD=5,EBC的周長為16,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖“書香八桂,閱讀圓夢”讀數(shù)活動中,某中學(xué)設(shè)置了書法、國學(xué)、誦讀、演講、征文四個比賽項目(每人只參加一個項目),九(2)班全班同學(xué)都參加了比賽,該班班長為了了解本班同學(xué)參加各項比賽的情況,收集整理數(shù)據(jù)后,繪制以下不完整的折線統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2),根據(jù)圖表中的信息解答下列各題:
(1)請求出九(2)全班人數(shù);
(2)請把折線統(tǒng)計圖補(bǔ)充完整;
(3)南南和寧寧參加了比賽,請用“列表法”或“畫樹狀圖法”求出他們參加的比賽項目相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,∠B的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=9,DF=2FC,則BC=(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2014年投入教育經(jīng)費(fèi)2900萬元,2016年投入教育經(jīng)費(fèi)3509萬元.
(1)求2014年至2016年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長率;
(2)按照義務(wù)教育法規(guī)定,教育經(jīng)費(fèi)的投入不低于國民生產(chǎn)總值的百分之四,結(jié)合該地區(qū)國民生產(chǎn)總值的增長情況,該地區(qū)到2018年需投入教育經(jīng)費(fèi)4250萬元,如果按(1)中教育經(jīng)費(fèi)投入的增長率,到2018年該地區(qū)投入的教育經(jīng)費(fèi)是否能達(dá)到4250萬元?請說明理由.
(參考數(shù)據(jù): =1.1, =1.2, =1.3, =1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,a、b、c分別是A、∠B、∠C的對邊,下列條件不能判斷ABC是直角三角形的是 ( )

A. A=∠C-∠B B. a2=b2-c2 C. a:b:c=2:3:4 D. a,b,c=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC的一邊AB上有一點P

(1)能否在另外兩邊ACBC上各找一點M、N,使得PMN的周長最短.若能,請畫出點M、N的位置,若不能,請說明理由;

(2)若ACB=40°,在(1)的條件下,求出MPN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、2、3、4的外角的角度和為220°,則∠BOD的度數(shù)是( 。

A. 400 B. 450 C. 500 D. 600

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD,AE分別是邊BC上的中線和高,

(1)若AE=3cm,SABC=12cm2.求DC的長.

(2)若∠B=40°,C=50°,求∠DAE的大。

查看答案和解析>>

同步練習(xí)冊答案