【題目】如圖,在每個小正方形的邊長為的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)在上,且點(diǎn)也在格點(diǎn)上.
(Ⅰ)的值為_____________;
(Ⅱ)是以點(diǎn)為圓心,為半徑的一段圓弧.在如圖所示的網(wǎng)格中,將線段繞點(diǎn)逆時針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,連接,,當(dāng)的值最小時,請用無刻度的直尺畫出點(diǎn),并簡要說明點(diǎn)的位置是如何找到的(不要求證明)______.
【答案】(Ⅰ) (Ⅱ)取格點(diǎn),連接,交于點(diǎn);連接,交于點(diǎn),點(diǎn)即為所求.
【解析】
(Ⅰ)根據(jù)網(wǎng)格中OB和OE的長直接得出比值即可
(Ⅱ)取格點(diǎn),連接,交于點(diǎn);連接,交于點(diǎn),點(diǎn)即為所求.
解:(Ⅰ)∵由圖可得OB=3,OE=2
∴;
故答案為:
(Ⅱ)取格點(diǎn),連接,交于點(diǎn);連接,交于點(diǎn),點(diǎn)即為所求.
說明:線段繞點(diǎn)逆時針旋轉(zhuǎn)得到,則,
連接并延長交OB于點(diǎn)F,則的值最小,要使的值最小,需讓,即,連接,,此時若△FOE′∽△E′OB,可得,
則只需OF=,需GF=,只需將線段DG分為2:1即可,∴取DN=2,GM=1MN 交OB于點(diǎn)F連接AF交 于點(diǎn)..
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,CE平分∠BCD,∠DAC=3∠BCD,∠ACD=20°,當(dāng)AB與AC互相垂直時,∠B的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形中,是邊上的兩個動點(diǎn),且,連接,與交于點(diǎn),連接交于點(diǎn),連接,下列結(jié)論:①;②平分;③;④;⑤線段的最小值是.正確的個數(shù)有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公園內(nèi)有一座古塔AB,在塔的北面有一棟建筑物,某日上午9時太陽光線與水平面的夾角為32°,此時塔在建筑物的墻上留下了高3米的影子CD.中午12時太陽光線與地面的夾角為45°,此時塔尖A在地面上的影子E與墻角C的距離為15米(B、E、C在一條直線上),求塔AB的高度.(結(jié)果精確到0.01米)
參考數(shù)據(jù):sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)傳統(tǒng)文化,某校開展了“傳承經(jīng)典文化,閱讀經(jīng)典名著”活動.為了解七、八年級學(xué)生(七、八年級各有600名學(xué)生)的閱讀效果,該校舉行了經(jīng)典文化知識競賽.現(xiàn)從兩個年級各隨機(jī)抽取20名學(xué)生的競賽成績(百分制)進(jìn)行分析,過程如下:
收集數(shù)據(jù):
七年級:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據(jù):
七年級 | 0 | 1 | 0 | a | 7 | 1 |
八年級 | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據(jù):
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級 | 78 | 75 | |
八年級 | 78 | 80.5 |
應(yīng)用數(shù)據(jù):
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計該校七、八兩個年級學(xué)生在本次競賽中成績在90分以上的共有多少人?
(3)你認(rèn)為哪個年級的學(xué)生對經(jīng)典文化知識掌握的總體水平較好,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(,是常數(shù),且),經(jīng)過點(diǎn),,與軸交于點(diǎn).
(Ⅰ)求拋物線的解析式;
(Ⅱ)若點(diǎn)是射線上一點(diǎn),過點(diǎn)作軸的垂線,垂足為點(diǎn),交拋物線于點(diǎn),設(shè)點(diǎn)橫坐標(biāo)為,線段的長為,求出與之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)在線段上時,設(shè),已知,是以為未知數(shù)的一元二次方程(為常數(shù))的兩個實(shí)數(shù)根,點(diǎn)在拋物線上,連接,,,且平分,求出值及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l:y=kx+b(k≠0)與反比例函數(shù)y的圖象的一個交點(diǎn)為M(1,m).
(1)求m的值;
(2)直線l與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,連接OM,設(shè)△AOB的面積為S1,△MOB的面積為S2,若S1≥3S2,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,為上一點(diǎn),連接,過作于點(diǎn),過點(diǎn)作,其中交的延長線于點(diǎn).
(1)求證:是的切線.
(2)如圖,點(diǎn)在上,且滿足,連接并延長交的延長線于點(diǎn).
①試探究線段與之間滿足的數(shù)量關(guān)系.
②若,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過公路路面的中心線時照明效果最好,此時,路燈的燈柱AB高應(yīng)該設(shè)計為多少米(結(jié)果保留根號)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com