【題目】如圖,已知的半徑為 4,是圓的直徑,點(diǎn)是的切線上的一個(gè)動(dòng)點(diǎn),連接交于點(diǎn),弦平行于,連接.
(1)試判斷直線與的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)__________時(shí),四邊形為菱形;
(3)當(dāng)___________時(shí),四邊形為正方形.
【答案】【解析】(1)證明見解析;⑵60°;⑶ .
【解析】
(1)根據(jù)EF∥AB,可以得到∠FAB和∠CAB的關(guān)系,可證得△ACB≌△AFB,可求得∠AFB=90°,可得出結(jié)論;
(2)根據(jù)四邊形ADFE為菱形,通過(guò)變形可以得到∠CAB的度數(shù);
(3)根據(jù)四邊形ACBF為正方形,AC=4,AF⊥AE且AF=AE,利用勾股定理可求得EF的長(zhǎng)
(1)BF與⊙A相切,理由如下:
∵EF∥AB,
∴∠AEF=∠CAB,∠AFE=∠FAB,
又∵AE=AF,
∴∠AEF=∠AFE,
∴∠FAB=∠CAB,
在△ABC和△ABF中
∴△ABC≌△ABF(SAS);
∴∠AFB=∠ACB =90°,
∴直線BF與⊙A相切.
(2)連接CF,如右圖所示,
若四邊形ADFE為菱形,則AE=EF=FD=DA,
又∵CE=2AE,CE是圓A的直徑,
∴CE=2EF,∠CFE=90°,
∴∠ECF=30°,
∴∠CEF=60°,
∵EF∥AB,
∴∠AEF=∠CAB,
∴∠CAB=60°,
故答案為60°;
(3)若四邊形ACBF為正方形,則AC=CB=BF=FA=4,且AF⊥AE,
∴
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),線段與軸平行,且,拋物線(常數(shù))經(jīng)過(guò)點(diǎn)
(1)求的解析式及其對(duì)稱軸和頂點(diǎn)坐標(biāo)
(2)判斷點(diǎn)是否在上,并說(shuō)明理由;
(3)若線段以每秒2個(gè)單位的速度向下平移,設(shè)平移的時(shí)間為秒
①若與線段總有公共點(diǎn),直接寫出的取值范圍
②若同時(shí)以每秒3個(gè)單位的速度向下平移,在軸及其右側(cè)圖像與直線總有兩個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,小明家住在30米高的A樓里,小麗家住在B樓里,B樓坐落在A樓的正北面,已知當(dāng)?shù)囟林形?/span>12時(shí)太陽(yáng)光線與水平面的夾角為30°.
(1)如果A、B兩樓相距16米,那么A樓落在B樓上的影子有多長(zhǎng)?
(2)如果A樓的影子剛好不落在B樓上,那么兩樓的距離應(yīng)是多少米?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作軸的垂線交拋物線于點(diǎn).
(1)求點(diǎn)、點(diǎn)、點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),直線交于點(diǎn),試探究當(dāng)為何值時(shí),四邊形是平行四邊形;
(3)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn),使是以為直角邊的直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,經(jīng)過(guò)原點(diǎn)O的拋物線(a≠0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).
(1)求這條拋物線的表達(dá)式;
(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);
(3)如圖2,若點(diǎn)M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)點(diǎn)、.
(1)求、滿足的關(guān)系式及的值.
(2)當(dāng)時(shí),若的函數(shù)值隨的增大而增大,求的取值范圍.
(3)如圖,當(dāng)時(shí),在拋物線上是否存在點(diǎn),使的面積為1?若存在,請(qǐng)求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(4,0).
(1)求拋物線的函數(shù)解析式;
(2)如圖①,將拋物線沿x軸翻折得到拋物線,拋物線與y軸交于點(diǎn)C,點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)D作DE∥y軸交拋物線于點(diǎn)E,求線段DE的長(zhǎng)度的最大值;
(3)在(2)的條件下,當(dāng)線段DE處于長(zhǎng)度最大值位置時(shí),作線段BC的垂直平分線交DE于點(diǎn)F,垂足為H,點(diǎn)P是拋物線上一動(dòng)點(diǎn),⊙P與直線BC相切,且S⊙P:S△DFH=2π,求滿足條件的所有點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了接受“省藝術(shù)特色學(xué)校”的驗(yàn)收,對(duì)義務(wù)教育的七、八、九三個(gè)年級(jí)學(xué)生舉行了書法大賽,賽后對(duì)三個(gè)年級(jí)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)解答下列問(wèn)題:
(1)請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;
(2)獲得一等獎(jiǎng)的同學(xué)有來(lái)自七年級(jí),有來(lái)自八年級(jí),其余同學(xué)均來(lái)自九年級(jí).現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選兩人參加市內(nèi)書法大賽,請(qǐng)你通過(guò)列表或畫樹狀圖,求所選兩人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=-2x+12分別與y軸,x軸交于A,B兩點(diǎn),點(diǎn)M在y軸上,以點(diǎn)M為圓心的⊙M與直線AB相切于點(diǎn)D,連接MD.
(1)求證:△ADM∽△AOB.
(2)如果⊙M的半徑為2,請(qǐng)寫出點(diǎn)M的坐標(biāo),并寫出以點(diǎn)為頂點(diǎn),且過(guò)點(diǎn)M的拋物線的函數(shù)表達(dá)式.
(3)在(2)的條件下,試問(wèn)在此拋物線上是否存在點(diǎn)P,使以P,A,M三點(diǎn)為頂點(diǎn)的三角形與△AOB相似?如果存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com