【題目】某校為了接受省藝術(shù)特色學(xué)校的驗(yàn)收,對(duì)義務(wù)教育的七、八、九三個(gè)年級(jí)學(xué)生舉行了書(shū)法大賽,賽后對(duì)三個(gè)年級(jí)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)解答下列問(wèn)題:

1)請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;

2)獲得一等獎(jiǎng)的同學(xué)有來(lái)自七年級(jí),有來(lái)自八年級(jí),其余同學(xué)均來(lái)自九年級(jí).現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選兩人參加市內(nèi)書(shū)法大賽,請(qǐng)你通過(guò)列表或畫(huà)樹(shù)狀圖,求所選兩人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率.

【答案】1)見(jiàn)解析;(2

【解析】

1)用參與獎(jiǎng)的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),再利用總?cè)藬?shù)分別減去其它得獎(jiǎng)數(shù)得到一等獎(jiǎng)人數(shù),用得三等獎(jiǎng)人數(shù)除以總?cè)藬?shù)得到三等獎(jiǎng)的百分比,然后補(bǔ)全兩統(tǒng)計(jì)圖;

2)畫(huà)樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),找出所選兩人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:(1)調(diào)查的總?cè)藬?shù)為12÷30%40(人),

所以一等獎(jiǎng)的人數(shù)為406810124(人),

三等獎(jiǎng)所占的百分比=×100%20%;

統(tǒng)計(jì)圖補(bǔ)全為:

3)獲得一等獎(jiǎng)的同學(xué)有1來(lái)自七年級(jí),有1來(lái)自八年級(jí),2個(gè)來(lái)自九年級(jí).

畫(huà)樹(shù)狀圖為:

共有12種等可能的結(jié)果數(shù),其中所選兩人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的結(jié)果數(shù)為4

所以所選兩人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有2個(gè)紅球,1個(gè)白球和1個(gè)藍(lán)球,這些球除顏色外都相同,小明和小凡準(zhǔn)備用這些球做游戲,游戲規(guī)則如下:從盒子中隨機(jī)摸出一個(gè)球,記下顏色后放回,再?gòu)闹须S機(jī)摸出一個(gè)球,若兩次摸到的球的顏色都是紅色,小明勝;若兩次摸到的球的顏色能配成紫色,則小凡勝,這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的半徑為 4是圓的直徑,點(diǎn)的切線上的一個(gè)動(dòng)點(diǎn),連接于點(diǎn),弦平行于,連接.

(1)試判斷直線的位置關(guān)系,并說(shuō)明理由;

(2)當(dāng)__________時(shí),四邊形為菱形;

(3)當(dāng)___________時(shí),四邊形為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃石市在創(chuàng)建國(guó)家級(jí)文明衛(wèi)生城市中,綠化檔次不斷提升.某校計(jì)劃購(gòu)進(jìn)A,B兩種樹(shù)木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購(gòu)買A種樹(shù)木2棵,B種樹(shù)木5棵,共需600元;購(gòu)買A種樹(shù)木3棵,B種樹(shù)木1棵,共需380元.

(1)求A種,B種樹(shù)木每棵各多少元?

(2)因布局需要,購(gòu)買A種樹(shù)木的數(shù)量不少于B種樹(shù)木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買樹(shù)木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角三角形ABC中,ABAC2,∠BAC90°,點(diǎn)DAC的中點(diǎn),點(diǎn)PBC邊上的動(dòng)點(diǎn),連接PA、PD.則PA+PD的最小值為(  )

A.B.C.D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,ECD的中點(diǎn),FBE上的一點(diǎn),連接CF并延長(zhǎng)交AB于點(diǎn)MMNCM交射線AD于點(diǎn)N

1)如圖1,當(dāng)點(diǎn)FBE中點(diǎn)時(shí),求證:AMCE;

2)如圖2,若3時(shí),求的值;

3)若nn≥3)時(shí),請(qǐng)直接寫(xiě)出的值.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB為⊙O的直徑,過(guò)點(diǎn)AAD平分∠BAC交⊙O于點(diǎn)D,過(guò)點(diǎn)DBC的平行線分別交ACAB的延長(zhǎng)線于點(diǎn)E、FDGAB于點(diǎn)G,連接BD

(1)求證:△AED∽△DGB;

(2)求證:EF是⊙O的切線;

(3),OA4,求劣弧的長(zhǎng)度(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC90°,ADBCD,BG平分∠ABCADE,交ACG,GFBCF,連接EF

1)如圖1,求證:四邊形AEFG是菱形;

2)如圖2,若EBG的中點(diǎn),過(guò)點(diǎn)EEMBCACM,在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖2中是CM長(zhǎng)倍的所有線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某校開(kāi)展了以夢(mèng)想中國(guó)為主題的攝影大賽,要求參賽學(xué)生每人交一件作品.現(xiàn)將

從中挑選的50件參賽作品的成績(jī)單位:分統(tǒng)計(jì)如下:

等級(jí)

成績(jī)用m表示

頻數(shù)

頻率

A

90 m 100

x

0.08

B

80 m 90

34

y

C

m 80

12

0.24

合計(jì)

50

1

請(qǐng)根據(jù)上表提供的信息,解答下列問(wèn)題:

1表中的值為_(kāi)____________,的值為_(kāi)_____________;直接填寫(xiě)結(jié)果

2將本次參賽作品獲得A等級(jí)的學(xué)生依次用A1、A2、A3……表示.現(xiàn)該校決定從本次參賽作品獲得A等級(jí)的學(xué)生中,隨機(jī)抽取兩名學(xué)生談?wù)勊麄兊膮①愺w會(huì),則恰好抽到學(xué)生A1和A2的概率為_(kāi)___________.直接填寫(xiě)結(jié)果

查看答案和解析>>

同步練習(xí)冊(cè)答案