【題目】觀察下列各式及其驗(yàn)證過程: 驗(yàn)證: = ;
驗(yàn)證: = = = ;
驗(yàn)證: = ;
驗(yàn)證: = = = .
(1)按照上述兩個(gè)等式及其驗(yàn)證過程的基本思路,猜想4 的變形結(jié)果并進(jìn)行驗(yàn)證;
(2)針對(duì)上述各式反映的規(guī)律,寫出用n(n為任意自然數(shù),且n≥2)表示的等式,并給出證明.
【答案】
(1)解: .驗(yàn)證如下:
左邊= = = = =右邊,
故猜想正確
(2)解: .證明如下:
左邊= = = = =右邊
【解析】(1)通過觀察,不難發(fā)現(xiàn):等式的變形過程利用了二次根式的性質(zhì)a= (a≥0),把根號(hào)外的移到根號(hào)內(nèi);再根據(jù)“同分母的分式相加,分母不變,分子相加”這一法則的倒用來進(jìn)行拆分,同時(shí)要注意因式分解進(jìn)行約分,最后結(jié)果中的被開方數(shù)是兩個(gè)數(shù)相加,兩個(gè)加數(shù)分別是左邊根號(hào)外的和根號(hào)內(nèi)的;(2)根據(jù)上述變形過程的規(guī)律,即可推廣到一般.表示左邊的式子時(shí),注意根號(hào)外的和根號(hào)內(nèi)的分子、分母之間的關(guān)系:根號(hào)外的和根號(hào)內(nèi)的分子相同,根號(hào)內(nèi)的分子是分母的平方減去1.
【考點(diǎn)精析】利用算數(shù)平方根對(duì)題目進(jìn)行判斷即可得到答案,需要熟知正數(shù)a的正的平方根叫做a的算術(shù)平方根;正數(shù)和零的算術(shù)平方根都只有一個(gè),零的算術(shù)平方根是零.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A.當(dāng)AB=BC時(shí),它是菱形
B.當(dāng)AC⊥BD時(shí),它是菱形
C.當(dāng)∠ABC=90°時(shí),它是矩形
D.當(dāng)AC=BD時(shí),它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過點(diǎn)E作EG∥CD交舡于點(diǎn)G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2) 求證: ;
(3)若AG=6,EG=2,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A.垂線最短
B.兩點(diǎn)之間直線最短
C.如果兩個(gè)角互補(bǔ),那么這兩個(gè)角中一個(gè)是銳角,一個(gè)是鈍角
D.同角的補(bǔ)角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一元二次方程x2-2x+1=0,根的判別式b2-4ac中的b表示的數(shù)是( )
A.-2B.2C.-1D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C.
(1)直接寫出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)如圖2,連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;用含m的代數(shù)式表示線段PF的長(zhǎng);并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
(3)如圖3,連接AC,在x軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一線城市對(duì)出租車營(yíng)運(yùn)價(jià)進(jìn)行了調(diào)整,調(diào)價(jià)前后的收費(fèi)標(biāo)準(zhǔn)對(duì)比如下:調(diào)整前,3公里及3公里以內(nèi)12.5元,3公里后里程價(jià)2.4元/公里,無返空費(fèi);調(diào)整后, 2公里及2公里以內(nèi)10元,2公里后里程價(jià)2.4元/公里,超過25公里部分,按里程價(jià)的30%加收返空費(fèi).
(1)請(qǐng)你幫忙計(jì)算一下,調(diào)價(jià)后,若乘客乘坐出租車的行程為8公里,他比以前少付了多少錢(不考慮紅燈等因素)?
(2)網(wǎng)上流傳“24公里換車”規(guī)避返空費(fèi),即乘客的行程超過25公里,就在24公里處下車,換乘另一輛出租車.但其實(shí)并不是所有行程超過25公里的乘客都需要換車.
例如:①若行程為30公里:不換車,總費(fèi)用為:
10+23×2.4+5×2.4×130%=80.8元;
換車,總費(fèi)用為:10+22×2.4+10+4×2.4=82.4元,因此,行程30公里若換車,則費(fèi)用反而增加2.4元.
②若行程為40公里,不換車,總費(fèi)用為:
10+23×2.4+15×2.4×130%=112元,若換車,總費(fèi)用為:10+22×2.4+10+2.4×14=106.4元,則可節(jié)約5.6元.
若設(shè)行程為x 公里(26<x<48 ),請(qǐng)用含x的式子分別表示出不換車的費(fèi)用和換車的費(fèi)用,并幫忙計(jì)算一下,行程超過多少公里后換車會(huì)就會(huì)節(jié)約費(fèi)用(不考慮紅燈等因素).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com