【題目】如圖,BD是△ABC的角平分線,過點DDEBCAB于點E,DFABBC于點F

⑴求證:四邊形BEDF為菱形;

⑵如果∠A100°,C30°,求∠BDE的度數(shù).

【答案】(1)證明見解析(2)25°

【解析】

(1)首先證明四邊形DEBF是平行四邊形,根據(jù)平行線的性質(zhì)得到∠EDB=∠DBF,根據(jù)角平分線的性質(zhì)得到∠ABD=∠DBF,等量代換得到∠ABD=∠EDB,得到DEBE,即可證明四邊形BEDF為菱形;

⑵根據(jù)三角形的內(nèi)角和求出的度數(shù),根據(jù)角平分線的性質(zhì)得到的度數(shù),根據(jù)平行線的性質(zhì)即可求解.

1)∵DEBCDFAB

∴四邊形DEBF是平行四邊形

DEBC

∴∠EDB=∠DBF

BD平分∠ABC

∴∠ABD=∠DBFABC

∴∠ABD=∠EDB

DEBE

∴四邊形BEDF為菱形;

(2) A100°,C30°,

BD平分∠ABC

∴∠ABD=∠DBFABC

DEBC

∴∠EDB=∠DBF= 25°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰直角,,,為邊上一動點,連結(jié),在射線上取一點使,若點運動到,則點運動的路徑長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD邊長為4,MN分別是BC、CD上的兩個動點,當M點在BC上運動時,保持AMMN垂直,

1)證明:Rt△ABM ∽Rt△MCN;

2)設(shè)BM=x,梯形ABCN的面積為y,求yx之間的函數(shù)關(guān)系式;當M點運動到什么位置時,四邊形ABCN的面積最大,并求出最大面積;

3)當M點運動到什么位置時Rt△ABM∽Rt△AMN,求此時x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bxca、b、c是常數(shù),a≠0)經(jīng)過原點O兩點,點P在該拋物線上運動,以點P為圓心的⊙P總經(jīng)過定點A(0, 2)

1a= ,b= ,c= ;

2)求證:在點P運動的過程中,⊙P始終與x軸相交;

3)設(shè)⊙Px軸相交于M、N兩點,MN的左邊.當△AMN為等腰三角形時,直接寫出圓心P的橫坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,.半徑為的圓與邊相交于點與邊相交于點連結(jié)并延長,與線段的延長線交于點

1)當時,連結(jié)相似,求的長;

2)若的正切值;

3)若,設(shè)的周長為,求關(guān)于的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x這樣的方程,可以通過方程兩邊平方把它轉(zhuǎn)化為2x+3x2,解得x13x2=﹣1.但由于兩邊平方,可能產(chǎn)生增根,所以需要檢驗,經(jīng)檢驗,當x13時,3滿足題意;當x2=﹣1時,=﹣1不符合題意;所以原方程的解是x3.運用以上經(jīng)驗,則方程x+1的解為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EABCDBC邊的中點,BDAE相交于F,則ABF與四邊形ECDF的面積之比等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年學(xué)校舉行足球聯(lián)賽,共賽17輪(即每隊均需參賽17場),記分辦法是:勝1場得3分,平1場得1分,負1場得0分.在這次足球比賽中,小虎足球隊得16分,且踢平場數(shù)是所負場數(shù)的整數(shù)倍,則小虎足球隊所負場數(shù)的情況有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務(wù)所需天數(shù)是甲工程隊單獨完成修路任務(wù)所需天數(shù)的1.5倍

(1)求甲、乙兩個工程隊每天各修路多少千米?

(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?

查看答案和解析>>

同步練習(xí)冊答案