【題目】某探測隊在地面A、B兩處均探測出建筑物下方C處有生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)

【答案】作CD⊥AB交AB延長線于D,

設(shè)CD=x 米.

Rt△ADC中,∠DAC=25°,

所以tan25°= =0.5,

所以AD= =2x.

Rt△BDC中,∠DBC=60°,

由tan 60°= = ,

解得:x≈3.

所以生命跡象所在位置C的深度約為3米.


【解析】作CD⊥AB交AB延長線于D,設(shè)CD=x 米, 根據(jù)正切函數(shù)的定義得出AD=2x,再根據(jù)特殊銳角的三角函數(shù)值及正切定義列出關(guān)于x的方程,求解即可得到答案。
【考點精析】關(guān)于本題考查的銳角三角函數(shù)的定義和特殊角的三角函數(shù)值,需要了解銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù);分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AD⊥BCD,CE⊥ABE,ADCE交于點F,且AD=CD.

(1)求證:△ABD≌△CFD;

(2)已知BC=7,AD=5,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買2個足球和3個籃球共需340元,購買5個足球和2個籃球共需410元.

1)購買一個足球、一個籃球各需多少元?

2)根據(jù)學(xué)校的實際情況,需購買足球和籃球共96個,并且總費用不超過5720元.問最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個兩位數(shù),個位數(shù)比十位數(shù)大2,若把各位數(shù)字和十位數(shù)字對調(diào),則所得的新的兩位數(shù)比原數(shù)的兩倍少17.若設(shè)原數(shù)的個位數(shù)為,十位數(shù)字為,則下列方程組正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B,C三名大學(xué)生競選系學(xué)生會主席,他們的筆試成績和口試成績(單位:分)分別用了兩種方式進行了統(tǒng)計,如表和圖1:

競選人

A

B

C

筆試

85

95

90

口試

80

85


(1)請將表和圖1中的空缺部分補充完整.
(2)競選的最后一個程序是由本系的300名學(xué)生進行投票,三位候選人的得票情況如圖2(沒有棄權(quán)票,每名學(xué)生只能推薦一個),則B在扇形統(tǒng)計圖中所占的圓心角是度.
(3)若每票計1分,系里將筆試、口試、得票三項測試得分按4:3:3的比例確定個人成績,請計算三位候選人的最后成績,并根據(jù)成績判斷誰能當(dāng)選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成推理過程

1)如圖,已知∠1=2,∠B=C,求證:ABCD

證明∵∠1=2(已知),

且∠1=CGD(  )

∴∠2=CGD(     )

CEBF(  ),

C=BFD(  )

又∵∠B=C(已知),

BFD=B(  ),

ABCD(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系中.

1)寫出ABC各頂點的坐標(biāo).

2)把ABC向上平移2個單位,再向右平移2個單位得A'B'C',在圖中畫出A'B'C',并寫出A'、B'C'的坐標(biāo).

3)求出

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A、B間的距離:先在AB外選一點C,然后測出ACBC的中點M,N,并測量出MN的長為6 m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動的描述錯誤的是

A. AB=12 m B. MNAB

C. CMNCAB D. CMMA=12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為8的等邊三角形ABC中,點D沿射線AB方向由AB運動,點F同時從C出發(fā),以相同的速度每秒1個單位長度沿射線BC方向運動,過點DDEAC,連結(jié)DF交射線AC于點G

1)當(dāng)DFAB時,求AD的長;

2)求證:EGAC

3)點DA出發(fā),經(jīng)過幾秒,CG1.6?直接寫出你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案