【題目】學(xué)生小明將線段的垂直平分線上的點,稱作線段的“軸點”.其中,當時,稱為線段的“長軸點”;當時,稱為線段的“短軸點”.
(1)如圖1,點,的坐標分別為,,則在,,,中線段的“短軸點”是______.
(2)如圖2,點的坐標為,點在軸正半軸上,且.
①若為線段的“長軸點”,則點的橫坐標的取值范圍是( )
A. B. C. D.或
②點為軸上的動點,點,在線段的垂直平分線的同側(cè).若為線段的“軸點”,當線段與的和最小時,求點的坐標.
【答案】(1),;(2)①D;② .
【解析】
(1)先排除點,再分別表示角的正切值,根據(jù)特殊角的正切值,得出三個角的范圍即可得出答案;
(2)①根據(jù)已知求出AB的長,作線段AB 的垂直平分線,并分別求出t=0,及t=3時,角的度數(shù),從而得出點P為AB的長軸點時t的范圍;
②根據(jù)題意,得出當點與點重合,為與直線的交點時,最小.再根據(jù)OA=3列方程即可得出答案.
解:(1)
點P在線段AB的垂直平分線l上
不是線段AB的“軸點”
,,
,,
,,
點為線段AB的“短軸點”,點為線段AB的“短軸點”,點為線段AB的“長軸點”.
故答案為:,.
(2)①D
直線AB函數(shù):
作線段AB的垂直平分線l,與AB交與點M,作交直線l與點,此時點P橫坐標為3,直線l與y軸的交點為點P橫坐標為0的情況.連接 ,.
同理可知,
當或時,點P為線段AB的“長軸點”
故選D.
②根據(jù)題意,點在線段的垂直平分線上.
點,在直線的同側(cè)時,
對于滿足題意的點的每一個位置,都有.
∵,,
∴當點與點重合,為與直線的交點時,最小.
如圖,∵,,
∴.
∴.
在中,設(shè),則.
∴.解得x=1.
∴.
綜上,當線段與的和最小時,點的坐標為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B. F. C.E在一條直線上(點F,C之間不能直接測量),點A,D在直線l的異側(cè),測得AB=DE,AB∥DE,AC∥DF.
(1)求證:△ABC≌△DEF;
(2)若BE=13m,BF=4m,求FC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化生活環(huán)境,小蘭的爸爸要在院墻外的一塊空地上修建一個矩形花圃.如圖所示,矩形花圃的一邊利用長10米的院墻,另外三條邊用籬笆圍成,籬笆的總長為32米.設(shè)AB的長為x米,矩形花圃的面積為y平方米.
(1)用含有x的代數(shù)式表示BC的長,BC= ;
(2)求y與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍;
(3)當x為何值時,y有最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過整式乘法的學(xué)習(xí),我們進一步了解了利用圖形面積來說明法則、公式等的正確性的方法,例如利用圖甲可以對平方差公式給予解釋.圖乙中的是一個直角三角形,,人們很早就發(fā)現(xiàn)直角三角形的三邊滿足的關(guān)系.圖丙是2002年國際數(shù)學(xué)家大會的會徽,選定的是我國古代數(shù)學(xué)家趙爽用來證明勾股定理的弦圖,弦圖是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形.如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短直角邊長為,較長直角邊長為,求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在 中 ,平分交 于 ,的兩邊分別與, 相交于,兩點,且.
(1)如圖,若, ,, ,.
①寫出 °,的長是 .
②求四邊形的周長.
(2)如圖,過作于,作于,先補全圖乙再證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:△BED≌△CFD;
(2)若∠A=60°,BE=2,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市有三個景區(qū)是人們節(jié)假日游玩的熱點景區(qū),某學(xué)校對七(1)班學(xué)生“五一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調(diào)查,調(diào)查分四個類別,A:三個景區(qū);B:游兩個景區(qū);C:游一個景區(qū);D:不到這三個景區(qū)游玩,現(xiàn)根據(jù)調(diào)查結(jié)果繪制了如下不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:
(1)九(1)班現(xiàn)有學(xué)生__________人,在扇形統(tǒng)計圖中表示“B類別”的扇形的圓心角的度數(shù)為__________;
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校七年級有1000名學(xué)生,求計劃“五一”小長假隨父母到這三個景區(qū)游玩的學(xué)生多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作EF∥AD,與AC,DC分別交于點G,F(xiàn),H為CG的中點,連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若,則S△EDH=13S△CFH .
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com