【題目】計算

(1)(-3)-(-2)+(-4)

(2)(-)-(-)-|-|-(-)

(3)-23÷×(-)2

(4)()×(-36)

(5)-14-×

(6)(-1)4+5÷(-)×(-6)

【答案】(1)-5;(2);(3)-8;(4)-27;(5);(6)181.

【解析】

根據(jù)有理數(shù)的相關運算法則計算即可

解:(1)(-3)-(-2)+(-4)

=-3+2+(-4)

=-1+(-4)

=-5

(2)(-)-(-)-|-|-(-)

=(-)+-+

=-+5

=

(3)-23÷×(-)2

=-8××

=-8

(4)()×(-36)

=×(-36)+×(-36)-×(-36)

=-18-30+21

=-48+21

=-27

(5)-14-×

解:原式=-1-×(2-9)

=-1-×(-7)

=-1+

=

(6)(-1)4+5÷(-)×(-6)

=1+5×(-6)×(-6)

=1+180

=181

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,C=90,AC=BC,AD平分∠CABDEAB,垂足為E.

(1)求證:CD=BE

(2)AB=10,求BD的長度。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;

(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2,并直接寫出點B2、C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某小區(qū)有一塊長為30m,寬為24m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,直線y=﹣x+8x軸交于點A,與直線y=x交于點B,點PAB邊的中點,作PCOB與點C,PDOA于點D.

(1)填空:點A坐標為   ,點B的坐標為   ,CPD度數(shù)為   ;

(2)如圖②,若點M為線段OB上的一動點,將直線PM繞點P按逆時針方向旋轉,旋轉角與∠AOB相等,旋轉后的直線與x軸交于點N,試求MBAN的值;

(3)在(2)的條件下,當MB<2時(如圖③),試證明:MN=DN﹣MC;

(4)在(3)的條件下,設MB=t,MN=s,直接寫出st的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠ABC的平分線交AD于點E,過點DBE的平行線交于BCF

(1)求證:△ABE≌CDF;

(2)若AB=6,BC=8,DE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y=圖象上的任意一點,過點A作AB∥x軸,AC∥y軸,分別交反比例函數(shù)y=的圖象于點B,C,連接BC,E是BC上一點,連接并延長AE交y軸于點D,連接CD,則SDEC﹣SBEA=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,給出如下定義:已知點A(2,3),點B(6,3),連接AB.如果線段AB上有一個點與點P的距離不大于1,那么稱點P是線段AB的“環(huán)繞點”.

(1)已知點C(3,1.5),D(4,3.5),E(1,3),則是線段AB的“環(huán)繞點”的點是   ;

(2)已知點P(m,n)在反比例函數(shù)y=的圖象上,且點P是線段AB的“環(huán)繞點”,求出點P的橫坐標m的取值范圍;

(3)已知M上有一點P是線段AB的“環(huán)繞點”,且點M(4,1),求M的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)解不等式≤1,并把它的解集在數(shù)軸上表示出來;

(2)若關于x的一元一次不等式x≥a只有3個負整數(shù)解,則a的取值范圍是   

查看答案和解析>>

同步練習冊答案