【題目】如圖,直線yxx軸、y軸分別相交于A、B兩點,圓心P的坐標(biāo)為(10),⊙Py軸相切于點O.若將⊙P沿x軸向左移動,當(dāng)⊙P與該直線相交時,滿足橫坐標(biāo)為整數(shù)的點P的個數(shù)是(

A.3B.4C.5D.6

【答案】A

【解析】

根據(jù)直線與坐標(biāo)軸的交點,得出A,B的坐標(biāo),再利用三角形相似得出圓與直線相切時的坐標(biāo),進而得出相交時的坐標(biāo).

直線yxx軸、y軸分別相交于A、B兩點,圓心P的坐標(biāo)為(10),

∴A點的坐標(biāo)為0x

x=-3,A-30),

B點的坐標(biāo)為:(0),

∴AB=2

將圓P沿x軸向左移動,當(dāng)圓P與該直線相切于C1時,P1C1=1,

根據(jù)△AP1C1∽△ABO,

∴AP1=2,

∴P1的坐標(biāo)為:(-1,0),

將圓P沿x軸向左移動,當(dāng)圓P與該直線相切于C2時,P2C2=1,

根據(jù)△AP2C2∽△ABO,

∴AP2=2,

P2的坐標(biāo)為:(-50),

-1-5,整數(shù)點有-2,-3,-4,故橫坐標(biāo)為整數(shù)的點P的個數(shù)是3個.

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將沿著過中點的直線折疊,使點落在邊上的處,稱為第1次操作,到折痕的距離記為;還原紙片后,再將沿著過中點的直線折疊,使點落在邊上的處,稱為第2次操作,到折痕的距離記為;按上述方法不斷操作下去,經(jīng)過第2019次操作后,到折痕的距離記為,若,則的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了  名學(xué)生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補充完整;

(3)該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進行溝通的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,RtABC中,∠C90°AC3,BC4,點DAB邊上任意一點,則CD的最小值為____

2)如圖②,矩形ABCD中,AB3BC4,點M、點N分別在BD、BC上,求CM+MN的最小值____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,過圓外一點EEF與⊙O相切于G,交AB的延長線于F,ECABH,交⊙OD,C兩點,連接AGDCK

1)求證:EGEK;

2)連接AC,若ACEFcosC,AK,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,分別是兩棵樹及其影子的情形

1)哪個圖反映了陽光下的情形?哪個圖反映了路燈下的情形.

2)請畫出圖中表示小麗影長的線段.

3)陽光下小麗影子長為1.20m樹的影子長為2.40m,小麗身高1.88m,求樹高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點DDEAC分別交AC的延長線于點E,交AB的延長線于點F

1)求證:EF是⊙O的切線;

2)若AC8,CE4,求弧BD的長.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,射線互相垂直,點上的一個動點,點在射線上,,作并截取,連結(jié)并延長交射線于點.設(shè),則關(guān)于的函數(shù)解析式是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把正方形紙片ABCD沿對邊上的兩點M、N所在的直線對折,使點B落在邊CD上的點E處,折痕為MN,其中CECD.若AB的長為2,則MN的長為(

A.3B.C.D.

查看答案和解析>>

同步練習(xí)冊答案