【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα= .下列結論:①△ADE∽△ACD;②當BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8;④0<CE≤6.4.其中正確的結論是 . (把你認為正確結論的序號都填上)

【答案】①②④
【解析】解:作AH⊥BC于H,如圖,
∵AB=AC,
∴∠B=∠C=α,BH=CH,
而∠ADE=∠B=α,
∴∠ADE=∠C,
而∠DAE=∠CAD,
∴△ADE∽△ACD,所以①正確;
在Rt△ABH中,cosB= ,
∴BH=10× =8,
∴BC=2BH=16,
當BD=6,則CD=10,
∵∠ADC=∠B+∠BAD,
而∠ADE=∠B=α,
∴∠EDC=∠BAD,
在△ABD與△DCE中
,
∴△ABD≌△DCE,所以②正確;
∵∠B=∠C,∠BAD=∠CDE,
∴△ABD∽△DCE,
△DCE為直角三角形,當∠DEC=90°,則∠ADB=90°,BD為8;當∠EDC=90°,則∠BAD=90°,BD= = ,所以③錯誤;
設BD=x,則CD=16﹣x,
由△ABD∽△DCE得 = ,即 =
∴CE=﹣ (x﹣8)2+6.4,
∴CE的最大值為6.4,
∴0<CE≤6.4,所以④正確.
所以答案是①②④.
【考點精析】通過靈活運用相似三角形的判定與性質,掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】冬天來了,曬衣服成了頭疼的事情,聰明的小華想到一個好辦法,在家后院地面(BD)上立兩根等長的立柱AB、CD(均與地面垂直),并在立柱之間懸掛一根繩子.由于掛的衣服比較多,繩子的形狀近似成了拋物線y=ax2﹣0.8x+c,如圖1,已知立柱AB=CD=2.6米,BD=8米.
(1)求繩子最低點離地面的距離;
(2)為了防止衣服碰到地面,小華在離AB為3米的位置處用一根垂直于地面的立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點距MN為1米,離地面1.6米,求MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若∠DBC=30°,DE=1cm,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鹽城市“創(chuàng)建文明城市”活動如火如荼的展開.某中學為了搞好“創(chuàng)建文明城市”活動的宣傳,校學生會就本校學生對鹽城“市情市況”的了解程度進行了一次調查測試.經過對測試成績的分析,得到如下圖所示的兩幅不完整的統(tǒng)計圖(A:59分及以下;B:60﹣69分;C:70﹣79分;D:80﹣89分;E:90﹣100分).請你根據圖中提供的信息解答以下問題:
(1)求該校共有多少名學生;
(2)將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,計算出“60﹣69分”部分所對應的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠ACB=90°,∠B=60°,D為AB的中點,∠EDF=90°,DE交AC于點G,DF經過點C.

(1)求∠ADE的度數(shù);
(2)如圖2,將圖1中的∠EDF繞點D順時針方向旋轉角α(0°<α<60°),旋轉過程中的任意兩個位置分別記為∠E1DF1 , ∠E2DF2 , DE1交直線AC于點P,DF1交直線BC于點Q,DE2交直線AC于點M,DF2交直線BC于點N,求 的值;
(3)若圖1中∠B=β(60°<β<90°),(2)中的其余條件不變,判斷 的值是否為定值?如果是,請直接寫出這個值(用含β的式子表示);如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張師傅駕車運送荔枝到某地出售,汽車出發(fā)前油箱有油50升,行駛若干小時后,圖中在加油站加油若干升,油箱中剩余油量y(升)與行駛時間t(小時)之間的關系如圖所示.
(1)汽車行駛小時后加油,中途加油升;
(2)求加油前油箱剩余油量y與行駛時間t的函數(shù)關系式;
(3)已知加油前、后汽車都以70千米/小時勻速行駛,如果加油站距目的地210千米,要到達目的地,問油箱中的油是否夠用?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程與不等式
(1)解方程:x2+3x﹣2=0;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知點A(a,0),B(0,b),且a、b滿足 ,ABCD的邊AD與y軸交于點E,且E為AD中點,雙曲線 經過C、D兩點.

(1)求k的值;
(2)點P在雙曲線 上,點Q在y軸上,若以點A、B、P、Q為頂點的四邊形是平行四邊形,試求滿足要求的所有點P、Q的坐標;
(3)以線段AB為對角線作正方形AFBH(如圖3),點T是邊AF上一動點,M是HT的中點,MN⊥HT,交AB于N,當T在AF上運動時, 的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,把一條拋物線先向上平移3個單位長度,然后繞原點選擇180°得到拋物線y=x2+5x+6,則原拋物線的解析式是( 。
A.y=﹣(x﹣ 2
B.y=﹣(x+ 2
C.y=﹣(x﹣ 2
D.y=﹣(x+ 2+

查看答案和解析>>

同步練習冊答案