【題目】教室內(nèi)的飲水機(jī)接通電源進(jìn)入自動(dòng)程序,開(kāi)機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開(kāi)始下降,此時(shí)水溫(℃)與開(kāi)機(jī)后用時(shí)(分鐘)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開(kāi)機(jī),重復(fù)上述自動(dòng)程序.如圖為在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間x(分鐘)的關(guān)系如圖.
(1)a= ;
(2)直接寫(xiě)出圖中y關(guān)于x的函數(shù)關(guān)系式;
(3)飲水機(jī)有多少時(shí)間能使水溫保持在70℃及以上?
(4)若飲水機(jī)早上已加滿(mǎn)水,開(kāi)機(jī)溫度是20℃,為了使8:40下課時(shí)水溫達(dá)到70℃及以上,并節(jié)約能源,直接寫(xiě)出當(dāng)它上午什么時(shí)間接通電源比較合適?
【答案】(1)7;(2) ;(3)6分鐘(4)8:29開(kāi)機(jī)
【解析】試題分析:(1)根據(jù)題意和函數(shù)圖象可以求得a的值;
(2)根據(jù)函數(shù)圖象和題意可以求得y關(guān)于x的函數(shù)關(guān)系式,注意函數(shù)圖象是循環(huán)出現(xiàn)的;
(3)根據(jù)(2)中的函數(shù)解析式可以解答本題;
(4)根據(jù)題意和(3)中的結(jié)果可以解答本題.
試題解析:(1)由題意可得,
a=(100-30)÷10=70÷10=7,
故答案為:7;
(2)當(dāng)0≤x≤7時(shí),設(shè)y關(guān)于x的函數(shù)關(guān)系式為:y=kx+b,
,
得,
即當(dāng)0≤x≤7時(shí),y關(guān)于x的函數(shù)關(guān)系式為y=10x+30,
當(dāng)x>30時(shí),設(shè)y=,
100=,得a=700,
即當(dāng)x>30時(shí),y關(guān)于x的函數(shù)關(guān)系式為y=,
當(dāng)y=30時(shí),x=,
∴y與x的函數(shù)關(guān)系式為:y=,
(3)將y=70代入y=10x+30,得x=4,
將y=70代入y=,得x=10,
∵10-4=6,
∴飲水機(jī)有6分鐘能使水溫保持在70℃及以上;
(4)由題意可得,
6+(70-20)÷10=11(分鐘),
∴40-11=29,
即8:29開(kāi)機(jī)接通電源比較合適.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB交CD于點(diǎn)O,OE平分∠BOC,OF平分∠BOD,∠AOC=3∠COE,則∠AOF等于___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=﹣x+m和y=2x+n的圖象都經(jīng)過(guò)A(﹣4,0),且與y軸分別交于B、C兩點(diǎn),則△ABC的面積為( 。
A.48B.36C.24D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以A點(diǎn)為圓心,以相同的長(zhǎng)為半徑作弧,分別與射線(xiàn)AM,AN交于B,C兩點(diǎn),連接BC,再分別以B,C為圓心,以相同長(zhǎng)(大于BC)為半徑作弧,兩弧相交于點(diǎn)D,連接AD,BD,CD.則下列結(jié)論錯(cuò)誤的是( )
A. AD平分∠MAN B. AD垂直平分BC
C. ∠MBD=∠NCD D. 四邊形ACDB一定是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)學(xué)生體質(zhì),各學(xué)校普遍開(kāi)展了陽(yáng)光體育活動(dòng),某校為了解全校1000名學(xué)生每周課外體育活動(dòng)時(shí)間的情況,隨機(jī)調(diào)查了其中的50名學(xué)生,對(duì)這50名學(xué)生每周課外體育活動(dòng)時(shí)間x(單位:小時(shí))進(jìn)行了統(tǒng)計(jì).根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計(jì)圖,并知道每周課外體育活動(dòng)時(shí)間在6≤x<8小時(shí)的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次調(diào)查屬于 調(diào)查,樣本容量是 ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖中空缺的部分;
(3)求這50名學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù);
(4)估計(jì)全校學(xué)生每周課外體育活動(dòng)時(shí)間不少于6小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線(xiàn)交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過(guò)點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).
(1)試判斷直線(xiàn)BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小東設(shè)計(jì)的“作△ABC中BC邊上的高線(xiàn)”的尺規(guī)作圖過(guò)程.
已知:△ABC.
求作:△ABC中BC邊上的高線(xiàn)AD.
作法:如圖,
①以點(diǎn)B為圓心,BA的長(zhǎng)為半徑作弧,以點(diǎn)C為圓心,CA的長(zhǎng)為半徑作弧,兩弧在BC下方交于點(diǎn)E;
②連接AE交BC于點(diǎn)D.
所以線(xiàn)段AD是△ABC中BC邊上的高線(xiàn).
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵ =BA, =CA,
∴點(diǎn)B,C分別在線(xiàn)段AE的垂直平分線(xiàn)上( )(填推理的依據(jù)).
∴BC垂直平分線(xiàn)段AE.
∴線(xiàn)段AD是△ABC中BC邊上的高線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在□ABCD中,BC=2AB,CE⊥AB于E,F為AD的中點(diǎn),若∠AEF=52°,則∠B=___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com