【題目】如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開(kāi)始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°)
(1)當(dāng)∠BAC=60°時(shí),將BP旋轉(zhuǎn)到圖2位置,點(diǎn)D在射線BP上.若∠CDP=120°,則∠ACD ∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數(shù)量關(guān)系是 ;
(2)當(dāng)∠BAC=120°時(shí),將BP旋轉(zhuǎn)到圖3位置,點(diǎn)D在射線BP上,若∠CDP=60°,求證:BD﹣CD=AD;
(3)將圖3中的BP繼續(xù)旋轉(zhuǎn),當(dāng)30°<α<180°時(shí),點(diǎn)D是直線BP上一點(diǎn)(點(diǎn)P不在線段BD上),若∠CDP=120°,請(qǐng)直接寫(xiě)出線段BD、CD與AD之間的數(shù)量關(guān)系(不必證明).
【答案】(1)=,BD=CD+AD;(2)證明見(jiàn)試題解析;(3)BD+CD=AD.
【解析】
試題分析:(1)如圖2,由∠CDP=120°,得出∠CDB=60°,則∠CDB=∠BAC=60°,所以A、B、C、D四點(diǎn)共圓,由圓周角定理得出∠ACD=∠ABD;在BP上截取BE=CD,連接AE.利用SAS證明△DCA≌△EBA,得到AD=AE,∠DAC=∠EAB,再證明△ADE是等邊三角形,得到DE=AD,進(jìn)而得出BD=CD+AD.
(2)如圖3,設(shè)AC與BD相交于點(diǎn)O,在BP上截取BE=CD,連接AE,過(guò)A作AF⊥BD于F.先證△DOC∽△AOB,得到∠DCA=∠EBA.再利用SAS證明△DCA≌△EBA,得到AD=AE,∠DAC=∠EAB.由∠CAB=∠CAE+∠EAB=120°,得出∠DAE=120°,由等腰三角形的性質(zhì)及三角形內(nèi)角和定理求出∠ADE=∠AED=30°.解Rt△ADF,得出DF=AD,那么DE=2DF=AD,進(jìn)而得出BD=DE+BE=AD+CD,即BD﹣CD=AD;
(3)同(2)證明可以得出BD+CD=AD.
試題解析:(1)如圖2,∵∠CDP=120°,∴∠CDB=60°,∵∠BAC=60°,∴∠CDB=∠BAC=60°,∴A、B、C、D四點(diǎn)共圓,∴∠ACD=∠ABD.在BP上截取BE=CD,連接AE.在△DCA與△EBA中,∵AC=AB,∠ACD=∠ABE,CD=BE,∴△DCA≌△EBA(SAS),∴AD=AE,∠DAC=∠EAB,∵∠CAB=∠CAE+∠EAB=60°,∴∠DAE=60°,∴△ADE是等邊三角形,∴DE=AD.∵BD=BE+DE,∴BD=CD+AD.故答案為:=,BD=CD+AD;
(2)如圖3,設(shè)AC與BD相交于點(diǎn)O,在BP上截取BE=CD,連接AE,過(guò)A作AF⊥BD于F.
∵∠CDP=60°,∴∠CDB=120°.∵∠CAB=120°,∴∠CDB=∠CAB,∵∠DOC=∠AOB,∴△DOC∽△AOB,∴∠DCA=∠EBA.在△DCA與△EBA中,∵AC=AB,∠ACD=∠ABE,CD=BE,∴△DCA≌△EBA(SAS),∴AD=AE,∠DAC=∠EAB.∵∠CAB=∠CAE+∠EAB=120°,∴∠DAE=120°,∴∠ADE=∠AED=(180°-120°)÷2=30°.∵在Rt△ADF中,∠ADF=30°,∴DF=AD,∴DE=2DF=AD,∴BD=DE+BE=AD+CD,∴BD﹣CD=AD;
(3)BD+CD=AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若A(x1,y1)、B(x2,y2)是一次函數(shù)y=ax―3x+5圖像上的不同的兩個(gè)點(diǎn),記W=(x1―x2)( y1―y2),則當(dāng)W<0時(shí),a的取值范圍是 ( )
A. a<0 B. a>0 C. a<3 D. a>3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】化簡(jiǎn)(m2-n2)-(m+n)(m-n),得( )
A. -2m2 B. 0 C. 2m2 D. 2m2-2n2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
B.“對(duì)角線相等且相互垂直平分的四邊形是正方形”這一事件是必然事件
C.“同位角相等”這一事件是不可能事件
D.“鈍角三角形三條高所在直線的交點(diǎn)在三角形外部”這一事件是隨機(jī)事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校舉辦一年一屆的科技文化藝術(shù)節(jié)活動(dòng),需制作一塊活動(dòng)展板,請(qǐng)來(lái)兩名工人.已知師傅單獨(dú)完成需4天,徒弟單獨(dú)完成需6天.
(1)兩個(gè)人合作需要天完成;
(2)現(xiàn)由徒弟先做1天,再兩個(gè)合作,問(wèn):還需幾天可以完成這項(xiàng)工作?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】絕對(duì)值等于其相反數(shù)的數(shù)一定是( )
A.負(fù)數(shù)
B.正數(shù)
C.負(fù)數(shù)或零
D.正數(shù)或零
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖①,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速移動(dòng),速度為1cm/s,當(dāng)△PNM停止平移時(shí),點(diǎn)Q也停止移動(dòng),如圖②,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4),連接PQ,MQ,MC,解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),PQ∥MN?
(2)設(shè)△QMC的面積為y(cm2),求y與x之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使S△QMC:S四邊形ABQP=1:4?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(4)是否存在某一時(shí)刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰△ABC的底邊BC=8cm,腰長(zhǎng)AB=5cm,一動(dòng)點(diǎn)P在底邊上從點(diǎn)B開(kāi)始向點(diǎn)C以0.25cm/秒的速度運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到PA與腰垂直的位置時(shí),點(diǎn)P運(yùn)動(dòng)的時(shí)間應(yīng)為_____秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)F是BC延長(zhǎng)線上一點(diǎn),以CF為邊,作菱形CDEF,使菱形CDEF與點(diǎn)A在BC的同側(cè),連接BE,點(diǎn)G是BE的中點(diǎn),連接AG、DG.
(1)如圖①,當(dāng)∠BAC=∠DCF=90°時(shí),直接寫(xiě)出AG與DG的位置和數(shù)量關(guān)系;
(2)如圖②,當(dāng)∠BAC=∠DCF=60°時(shí),試探究AG與DG的位置和數(shù)量關(guān)系,
(3)當(dāng)∠BAC=∠DCF=α?xí)r,直接寫(xiě)出AG與DG的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com