如圖,點(diǎn)M是雙曲線y=
2
x
上一點(diǎn),ME⊥y軸,MF⊥x軸,直線y=-x+m交坐標(biāo)軸于A、B兩點(diǎn),交ME于C點(diǎn),交MF于D點(diǎn),則AD•BC=
2
2
2
2
分析:先設(shè)M點(diǎn)的坐標(biāo)為(a,
2
a
),則把a(bǔ)代入直線y=-x+m即可求出C點(diǎn)的縱坐標(biāo),同理可用a表示出D點(diǎn)坐標(biāo),再根據(jù)直線y=-x+m的解析式可用m表示出A、B兩點(diǎn)的坐標(biāo),再根據(jù)兩點(diǎn)間的距離公式即可求出AD•BC的值.
解答:解:設(shè)M點(diǎn)的坐標(biāo)為(a,
2
a
),則C(m-
2
a
,
2
a
)、D(a,m-a),
∵直線y=-x+m與y軸交于點(diǎn)A,與x軸相交于點(diǎn)B,
∴A(0,m)、B(m,0),
∴AD•BC=
(0-
2
)2+(m-m-a)2
(m-m+
2
a
)2-(0-
2
a
)2
=
2
a
2
a
=2
2

故答案為:2
2
點(diǎn)評(píng):本題考查的是一次函數(shù)及反比例函數(shù)的性質(zhì),先設(shè)出M點(diǎn)坐標(biāo),用M點(diǎn)的坐標(biāo)表示出C、D兩點(diǎn)的坐標(biāo)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A是雙曲線y=
8x
(x>0)上的一點(diǎn),P為x軸正半軸上的一點(diǎn),且點(diǎn)P的坐標(biāo)為(4,0),將A點(diǎn)繞P點(diǎn)順時(shí)針旋轉(zhuǎn)90°,恰好落在此雙曲線上的另一點(diǎn)B,則B點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蕭山區(qū)模擬)如圖,點(diǎn)P是雙曲線y=
4
3
x
(x>0)上動(dòng)點(diǎn),在y軸上取點(diǎn)Q,使得以P、Q、O 為頂點(diǎn)的三角形是含有30°角的直角三角形,則符合條件的點(diǎn)Q的坐標(biāo)是
(0,2
3
)、(0,2)、(0,
8
3
3
)、(0,8)
(0,2
3
)、(0,2)、(0,
8
3
3
)、(0,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P是雙曲線y=
4
x
(x>0)
上一個(gè)動(dòng)點(diǎn),點(diǎn)Q為線段OP的中點(diǎn),則⊙Q的面積不可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通二模)如圖,點(diǎn)A是雙曲線y=
4
x
在第一象限上的一動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式為
y=-
4
x
y=-
4
x

查看答案和解析>>

同步練習(xí)冊(cè)答案