【題目】(1)如圖①,在△ABC中,∠ABC、∠ACB的平分線相交于點(diǎn)O,∠A=40°,求∠BOC的度數(shù);
(2)如圖②,△A′B′C′的外角平分線相交于點(diǎn)O′,∠A′=40°,求∠B′O′C′的度數(shù);
(3)上面(1)(2)兩題中的∠BOC與∠B′O′C′ 有怎樣的數(shù)量關(guān)系?若∠A=∠A′=n°,∠BOC與∠B′O′C′ 是否還具有這樣的關(guān)系?這個(gè)結(jié)論你是怎樣得到的?
【答案】(1)110° ; (2)70° ; (3)互補(bǔ).
【解析】
(1)先根據(jù)三角形內(nèi)角和定理求出∠ABC+∠ACB的度數(shù),再根據(jù)BO、CO分別平分∠ABC與∠ACB求出∠OBC+∠OCB的度數(shù),由三角形內(nèi)角和定理即可得出∠BOC的度數(shù).
(2)利用三角形的內(nèi)角和以及外角和性質(zhì)即可進(jìn)行解答;
(3)根據(jù)三角形內(nèi)角和定理和角平分線定義,(3)由前兩問提供的思路,進(jìn)一步推理.
解:(1)∵∠A=40°,
∴∠ABC+∠ACB=180°-40°=140°.
∵BO、CO分別是∠ABC、∠ACB的角平分線,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=×140°=70°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-70°=110°;
(2)因?yàn)椤?/span>A的外角等于180°-40°=140°,
△A′B′C′另外的兩外角平分線相交于點(diǎn)O′,
根據(jù)三角形的外角和等于360°,
所以∠1+∠2=×(360°-140°)=110°,
∠B′O′C′=180°-110°=70°;
(3)∵(1)(2)中∠BOC+∠B′O′C′=110°+70°=180°,∴∠BOC與∠B′O′C′互補(bǔ);
證明:當(dāng)∠A=n°時(shí),∠BOC=180°-[(180°-n°)÷2]=90°+,
∵∠A′=n°,∠B′O′C′=180°-[360°-(180°-n°)]÷2=90°-,
∴∠A+∠A′=90°++90°-=180°,∠BOC與∠B′O′C′互補(bǔ),
所以當(dāng)∠A=∠A′=n°,∠BOC與∠B′O′C′還具有互補(bǔ)的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說法正確的是( 。
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在暑假期間開展“心懷感恩,孝敬父母”的實(shí)踐活動(dòng),倡導(dǎo)學(xué)生在假期中幫助父母干家務(wù),開學(xué)以后,校學(xué)生會(huì)隨機(jī)抽取了部分學(xué)生,就暑假“平均每天幫助父母干家務(wù)所用時(shí)長(zhǎng)”進(jìn)行了調(diào)查,以下是根據(jù)相關(guān)數(shù)據(jù)繪制的統(tǒng)計(jì)圖的部分:
根據(jù)上述信息,回答下列問題:
在本次隨機(jī)抽取的樣本中,調(diào)查的學(xué)生人數(shù)是 人;
, ;
補(bǔ)全頻數(shù)分布直方圖;
如果該校共有學(xué)生人,請(qǐng)你估計(jì)“平均每天幫助父母干家務(wù)的時(shí)長(zhǎng)不少于分鐘”的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△CDE都是等邊三角形,A、C、E在一條直線上.
(1)線段AD與BE相等嗎?請(qǐng)證明你的結(jié)論;
(2)設(shè)AD與BE交于點(diǎn)O,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形ABC中,∠C=90°,AC=6cm,BC=10cm,點(diǎn)P從B點(diǎn)開始向C點(diǎn)運(yùn)動(dòng)速度是每秒1cm,設(shè)運(yùn)動(dòng)時(shí)間是t秒,
(1)用含t的代數(shù)式來表示三角形ACP的面積.
(2)當(dāng)三角形ACP的面積是三角形ABC的面積的一半時(shí),求t的值,并指出此時(shí)點(diǎn)P在BC上的什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了招聘一名優(yōu)秀教師,對(duì)入選的三名候選人進(jìn)行教學(xué)技能與專業(yè)知識(shí)兩種考核,現(xiàn)將甲、乙、丙三人的考核成績(jī)統(tǒng)計(jì)如下:
(1)如果校方認(rèn)為教師的教學(xué)技能水平與專業(yè)知識(shí)水平同等重要,那么候選人 將被錄取.
(2)如果校方認(rèn)為教師的教學(xué)技能水平比專業(yè)知識(shí)水平重要,并分別賦予它們6和4的權(quán).計(jì)算他們賦權(quán)后各自的平均成績(jī),并說明誰將被錄取.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)按如圖所示的方式疊放在一起(其中,,),固定三角板,另一三角板的邊從邊開始繞點(diǎn)順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的角度為.
(1)當(dāng)時(shí);
①若,則的度數(shù)為 ;
②若,求的度數(shù);
(2)由(1)猜想與的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)時(shí),這兩塊三角尺是否存在一組邊互相垂直?若存在,請(qǐng)直接寫出所有可能的值,并指出哪兩邊互相垂直(不必說明理由);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的快速發(fā)展,“互聯(lián)網(wǎng)+”滲透到我們?nèi)粘I畹母鱾(gè)領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢(mèng),現(xiàn)有某教學(xué)網(wǎng)站策劃了A,B兩種上網(wǎng)學(xué)習(xí)的月收費(fèi)方式:
收費(fèi)方式 | 月使用費(fèi)/元 | 包時(shí)上網(wǎng)時(shí)間/h | 超時(shí)費(fèi)/(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | 0.01 |
設(shè)每月上網(wǎng)學(xué)習(xí)時(shí)間為x小時(shí),方案A,B的收費(fèi)金額分別為yA,yB.
(1)如圖是yB與x之間函數(shù)關(guān)系的圖象,請(qǐng)根據(jù)圖象填空:m= ;n=
(2)寫出yA與x之間的函數(shù)關(guān)系式.
(3)選擇哪種方式上網(wǎng)學(xué)習(xí)合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣某包裝生產(chǎn)企業(yè)承接了一批上海世博會(huì)的禮品盒制作業(yè)務(wù),為了確保質(zhì)量,該企業(yè)進(jìn)行試生產(chǎn).他們購(gòu)得規(guī)格是170cm×40cm的標(biāo)準(zhǔn)板材作為原材料,每張標(biāo)準(zhǔn)板材再按照裁法一或裁法二裁下A型與B型兩種板材.如圖1所示,(單位:cm)
(1)列出方程(組),求出圖甲中a與b的值.
(2)在試生產(chǎn)階段,若將30張標(biāo)準(zhǔn)板材用裁法一裁剪,4張標(biāo)準(zhǔn)板材用裁法二裁剪,再將得到的A型與B型板材做側(cè)面和底面,做成圖2的豎式與橫式兩種無蓋禮品盒.
①兩種裁法共產(chǎn)生A型板材 張,B型板材 張;
②設(shè)做成的豎式無蓋禮品盒x個(gè),橫式無蓋禮品盒的y個(gè),根據(jù)題意完成表格:
③做成的豎式和橫式兩種無蓋禮品盒總數(shù)最多是 個(gè);此時(shí),橫式無蓋禮品盒可以做 個(gè).(在橫線上直接寫出答案,無需書寫過程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com