【題目】詩詞是中華民族燦爛文化中的瑰寶,王老師連續(xù)三個月在班上開展針對全班同學(xué)的古詩詞默寫的測試活動.如圖,王老師將三次默寫的成績(滿分10分)做了統(tǒng)計,并繪制了折線統(tǒng)計圖.由圖可知,以下結(jié)論錯誤的是(

A.男、女生11月份的平均成績相同

B.10月到12月,女生的平均成績一直在進步

C.10月到11月,女生的平均成績的增長率約為8.5%

D.11月到12月女生的平均成績比10月到11月的增長快

【答案】C

【解析】

根據(jù)折線統(tǒng)計圖逐一進行判斷即可.

A. 男、女生11月份的平均成績都是8.9分,故該選項正確,不符合題意;

B. 10月到12月,女生的平均成績一直在進步,故該選項正確,不符合題意;

C. 10月到11月,女生的平均成績的增長率約為,故該選項錯誤,符合題意;

D. 11月到12月女生的平均成績增長率為,故該選項正確,不符合題意;

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC 中,AB=AC,點 M BA 的延長線上,點 N BC 的延長線上,過點 C CDAB 交∠CAM 的平分線于點 D

1)如圖 1,求證:四邊形 ABCD 是平行四邊形;

2)如圖 2,當(dāng)∠ABC=60°時,連接 BD,過點 D DEBD,交 BN 于點 E,在不添加任何輔助線的情況下,請直接寫出圖 2 中四個三角形(不包含CDE),使寫出的每個三角形的面積與CDE 的面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為2的正方形ABCD中,對角線ACBD相交于點OPBD上一動點,過PEFAC,分別交正方形的兩條邊于點E,F.設(shè)BP=x,△BEF的面積為y,則能反映yx之間關(guān)系的圖象為( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC內(nèi)接于O

1)作B的平分線與O交于點D(用尺規(guī)作圖,不用寫作法,但要保留作圖痕跡)

2)在(1)中,連接ADBAC=60°,C=66°,DAC的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購進一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會成員隨機抽取部分學(xué)生進行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:

1)此次共調(diào)查了   名學(xué)生;

2)將條形統(tǒng)計圖1補充完整;

3)圖2中“小說類”所在扇形的圓心角為   度;

4)若該校共有學(xué)生2000人,估計該校喜歡“社科類”書籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示的是一種折疊門,已知門框的寬度AD=2米,兩扇門的大小相同(AB=CD),且AB+CD=AD,現(xiàn)將右邊的門CDD1C1繞門軸DD1向外面旋轉(zhuǎn)67°(如圖2).

1)求點CAD的距離.

2)將左邊的門ABB1A1繞門軸AA1向外面旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(如圖3),問α為多少時,點B,C之間的距離最短?(參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan29.6°≈0.57tan19.6°≈0.36,sin29.6°≈0.49

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△AOB,點C是邊AO所在直線上的動點,點Dx軸上的動點,在矩形CDEF中,CD=6,DE=,則OF的最小值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中有三點,,,其中有兩點同時在反比例函數(shù)的圖象上.將這兩點分別記為,另一點記為

1)求出的值;

2)求直線對應(yīng)的一次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+1經(jīng)過點(2,6),且與直線y=x+1相交于A,B兩點,點Ay軸上,過點BBCx軸,垂足為點C4,0).

1)求拋物線的解析式;

2)若P是直線AB上方該拋物線上的一個動點,過點PPDx軸于點D,交AB于點E,求線段PE的最大值;

3)在(2)的條件,設(shè)PCAB相交于點Q,當(dāng)線段PCBE相互平分時,請求出點Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案