【題目】如圖,AB為⊙O的直徑,AD為弦,∠DBC=∠A.

(1)求證:BC是⊙O的切線;
(2)連接OC,如果OC恰好經過弦BD的中點E,且tanC=,AD=3,求直徑AB的長.

【答案】
(1)

【解答】證明:∵AB為⊙O的直徑,

∴∠D=90°,

∴∠ABD+∠A=90°,

∵∠DBC=∠A,

∴∠DBC+∠ABD=90°,即AB⊥BC,

∴BC是⊙O的切線;


(2)

∵點O是AB的中點,點E時BD的中點,

∴OE是△ABD的中位線,

∴AD∥OE,

∴∠A=∠BOC.、

∵由(1)∠D=∠OBC=90°,

∴∠C=∠ABD,

∵tanC=

∴tan∠ABD=,解得BD=6,

∴AB=


【解析】(1)由AB為⊙O的直徑,可得∠D=90°,繼而可得∠ABD+∠A=90°,又由∠DBC=∠A,即可得∠DBC+∠ABD=90°,則可證得BC是⊙O的切線;
(2)根據點O是AB的中點,點E時BD的中點可知OE是△ABD的中位線,故AD∥OE,則∠A=∠BOC,再由(1)∠D=∠OBC=90°,故∠C=∠ABD,由tanC=可知tan∠ABD==,由此可得出結論.
【考點精析】利用切線的判定定理對題目進行判斷即可得到答案,需要熟知切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在我市開展“五城聯(lián)創(chuàng)”活動中,某工程隊承擔了某小區(qū)900米長的污水管道改造任務.工程隊在改造完360米管道后,引進了新設備,每天的工作效率比原來提高了20%,結果共用27天完成了任務,問引進新設備前工程隊每天改造管道多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線y=﹣x+3與x軸、y軸分別交于A、B,在△AOB內部作正方形,使正方形的四個頂點都落在該三角形的邊上,求正方形落在x軸正半軸的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,E是AB的中點,以E為圓心,ED為半徑作半圓,交A、B所在的直線于M、N兩點,分別以直徑MD、ND為直徑作半圓,則陰影部分面積為(  )

A.9
B.18
C.36
D.72

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于函數(shù)y=,下列說法錯誤的是( 。
A.這個函數(shù)的圖象位于第一、第三象限
B.這個函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形
C.當x>0時,y隨x的增大而增大
D.當x<0時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:
①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④當x>1時,y隨著x的增大而增大.
正確的說法有 . (請寫出所有正確的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,連接BD,先以D為圓心,DA為半徑作弧AC,再以D為圓心,DB為半徑作弧BE,且D、C、E三點共線,則圖中兩個陰影部分的面積之和是(
A. π
B. +1
C.π
D.π+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李老師為了解學生完成數(shù)學課前預習的具體情況,對部分學生進行了跟蹤調查,并將調查結果分為四類,A:很好;B:較好;C:一般;D:較差.制成以下兩幅不完整的統(tǒng)計圖,
請你根據統(tǒng)計圖解答下列問題:
(1)李老師一共調查了多少名同學?
(2)C類女生有名,D類男生有名,將下面條形統(tǒng)計圖補充完整
(3)為了共同進步,李老師想從被調查的A類和D類學生中各隨機選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題
(1)計算:﹣(2﹣ )﹣(π﹣3.14)0+(1﹣cos30°)×( 2;
(2)先化簡,再求值: ÷ ,其中a=

查看答案和解析>>

同步練習冊答案