【題目】某校為了慶祝建國(guó)七十周年,決定舉辦一臺(tái)文藝晚會(huì),為了了解學(xué)生最喜愛的節(jié)目形式,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,規(guī)定每人從“歌曲”,“舞蹈”,“小品”,“相聲”和“其它”五個(gè)選項(xiàng)中選擇一個(gè),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖中信息,解答下列題:
最喜愛的節(jié)目 | 人數(shù) |
歌曲 | 15 |
舞蹈 | a |
小品 | 12 |
相聲 | 10 |
其它 | b |
(1)在此次調(diào)查中,該校一共調(diào)查了 名學(xué)生;
(2)a= ;b= ;
(3)在扇形計(jì)圖中,計(jì)算“歌曲”所在扇形的圓心角的度數(shù);
(4)若該校共有1200名學(xué)生,請(qǐng)你估計(jì)最喜愛“相聲”的學(xué)生的人數(shù).
【答案】(1)50;(2)8,5;(3)108°;(4)240人.
【解析】
(1)從表格和統(tǒng)計(jì)圖中可以得到喜歡“小品”的人數(shù)為12人,占調(diào)查人數(shù)的24%,可求出調(diào)查人數(shù),
(2)舞蹈占50人的16%可以求出a的值,進(jìn)而從總?cè)藬?shù)中減去其他組的人數(shù)得到b的值,
(3)先計(jì)算“歌曲”所占的百分比,用360°去乘即可,
(4)樣本估計(jì)總體,用樣本喜歡“相聲”的百分比估計(jì)總體的百分比,進(jìn)而求出人數(shù).
(1)12÷24%=50人
故答案為50.
(2)a=50×16%=8人,
b=50﹣15﹣8﹣12﹣10=5人,
故答案為:8,5.
(3)360°×=108°
答:“歌曲”所在扇形的圓心角的度數(shù)為108°;
(4)1200×=240人
答:該校1200名學(xué)生中最喜愛“相聲”的學(xué)生大約有240人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k≠8)的圖像經(jīng)過點(diǎn)A(1,6).
(1)求k的值;
(2)如圖,過點(diǎn)A作直線AC與函數(shù)的圖像交于點(diǎn)B,與x軸交于點(diǎn)C,且AB=2BC,求直線AC的解析式;
(3)在(2)的條件下,連接OA,過y軸的正半軸上的一點(diǎn)D作直線DE∥x軸,分別交線段AC、OA于點(diǎn)E、F,若△AEF的面積為,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的直徑,C是上一點(diǎn),D是的中點(diǎn),為延長(zhǎng)線上一點(diǎn),AE切于A,AC與BD交于點(diǎn)H,與OE交于點(diǎn)F,連結(jié)EC.
(1)求證:EC是的切線;
(2)若DH=9,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017黑龍江省哈爾濱市,第26題,10分)已知:AB是⊙O的弦,點(diǎn)C是的中點(diǎn),連接OB、OC,OC交AB于點(diǎn)D.
(1)如圖1,求證:AD=BD;
(2)如圖2,過點(diǎn)B作⊙O的切線交OC的延長(zhǎng)線于點(diǎn)M,點(diǎn)P是上一點(diǎn),連接AP、BP,求證:∠APB﹣∠OMB=90°;
(3)如圖3,在(2)的條件下,連接DP、MP,延長(zhǎng)MP交⊙O于點(diǎn)Q,若MQ=6DP,sin∠ABO=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PB為⊙O的切線,B為切點(diǎn),直線PO交⊙于點(diǎn)E、F,過點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO與⊙O交于點(diǎn)C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和線段PE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+2的圖象與x軸相交于點(diǎn)A(﹣1,0)、B(4,0),與y軸相交于點(diǎn)C.
(1)求該函數(shù)的表達(dá)式;
(2)點(diǎn)P為該函數(shù)在第一象限內(nèi)的圖象上一點(diǎn),過點(diǎn)P作PQ⊥BC,垂足為點(diǎn)Q,連接PC.
①求線段PQ的最大值;
②若以點(diǎn)P、C、Q為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某茶具店購(gòu)進(jìn)了A、B兩種不同的茶具,1套A種茶具和2套B種茶具共需250元;3套A種茶具和4套B種茶具共需600元.
(1)求A、B兩種茶具每套的進(jìn)價(jià)分別是多少元?
(2)由于茶具暢銷,茶具店準(zhǔn)備再購(gòu)進(jìn)A、B兩種茶具共80套,但這次進(jìn)貨時(shí),工廠對(duì)A種茶具每套進(jìn)價(jià)提高了8%,而B種茶具每套按第一次進(jìn)價(jià)的八折,若茶具店本次進(jìn)貨總錢數(shù)不超過6240元,則最多可進(jìn)A種茶具幾套?
(3)若銷售一套A種茶具可獲利30元,銷售一套B種茶其可獲利20元,在(2)的條件下,如何進(jìn)貨可使本次購(gòu)進(jìn)茶具獲利最多?最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市用3 000元購(gòu)進(jìn)某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9 000元購(gòu)進(jìn)該種干果,但這次的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%,購(gòu)進(jìn)干果數(shù)量比第一次的2倍還多300 kg.如果超市按9元/kg的價(jià)格出售,當(dāng)大部分干果售出后,余下的600 kg按售價(jià)的八折售完.
(1)該種干果第一次的進(jìn)價(jià)是多少?
(2)超市銷售這種干果共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)P是線段AO上(不與點(diǎn)A,O重合)的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PE⊥PB且PE交邊CD于點(diǎn)E.
(1)求證:PE=PB;
(2)如圖2,若正方形ABCD的邊長(zhǎng)為2,過點(diǎn)E作EF⊥AC于點(diǎn)F,在點(diǎn)P運(yùn)動(dòng)的過程中,PF的長(zhǎng)度是否發(fā)生變化?若不變,試求出這個(gè)不變的值;若變化,請(qǐng)說明理由;
(3)用等式表示線段PC,PA,CE之間的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com