【題目】如圖,在△ABC中,∠B=90°,AB=12mm,BC=24mm,動點P從點A開始沿邊AB向B以2mm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BC向C以4mm/s的速度移動(不與點C重合).如果P、Q分別從A、B同時出發(fā),設(shè)運動的時間為ts,四邊形APQC的面積為ymm2.
(1)y與t之間的函數(shù)關(guān)系式;
(2)求自變量t的取值范圍;
(3)四邊形APQC的面積能否等于172mm2.若能,求出運動的時間;若不能,說明理由.
【答案】(1)y=4t2﹣24t+144;(2)0<t<6;(3)四邊形APQC的面積不能等于172mm2,見解析.
【解析】
(1)利用兩個直角三角形的面積差求得答案即可;
(2)利用線段的長度與運動速度建立不等式得出答案即可;
(3)利用(1)的函數(shù)建立方程求解判斷即可.
解:(1)∵出發(fā)時間為t,點P的速度為2mm/s,點Q的速度為4mm/s,
∴PB=12﹣2t,BQ=4t,
∴y=×12×24﹣×(12﹣2t)×4t
=4t2﹣24t+144.
(2)∵t>0,12﹣2t>0,
∴0<t<6.
(3)不能,
4t2﹣24t+144=172,
解得:t1=7,t2=﹣1(不合題意,舍去)
因為0<t<6.所以t=7不在范圍內(nèi),
所以四邊形APQC的面積不能等于172mm2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,二次函數(shù)的圖像與x軸的一個交點為O(0,0),點P(m,0)是x軸正半軸上的一個動點.
(1)如圖1,求二次函數(shù)的圖像與x軸另一個交點的坐標(biāo);
(2)如圖2,過點P作x軸的垂線交直線與點C,交二次函數(shù)圖像于點D,
①當(dāng)PD=2PC時,求m的值;
如圖3,已知A(3,-3)在二次函數(shù)圖像上,連結(jié)AP,求的最小值;
(3如圖4,在第(2)小題的基礎(chǔ)上,作直線OD,作點C關(guān)于直線OD的對稱點C’,當(dāng)C’落在坐標(biāo)軸上時,請直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】跳跳一家外出自駕游,出發(fā)時油箱里還剩有汽油30升,已知跳跳家的汽車每百千米的平均油耗為12升,設(shè)油箱里剩下的油量為y(單位:升),汽車行駛的路程為x(單位:千米).
(1)求y關(guān)于x的函數(shù)表達(dá)式;
(2)若跳跳家的汽車油箱中的油量低于5升時,儀表盤會亮起黃燈警報. 要使郵箱中的存油量不低于5升,跳跳爸爸至多能夠行駛多少千米就要進(jìn)加油站加油?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.小米先從盒子中隨機(jī)取出一個小球,記下數(shù)字為x,且不放回盒子,再由小華隨機(jī)取出一個小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小米、小華各取一次小球所確定的點(x,y)落在反比例函數(shù)y=的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店準(zhǔn)備銷售一種多功能旅行背包,計劃從廠家以每個120元的價格進(jìn)貨.
(1)經(jīng)過市場調(diào)查發(fā)現(xiàn),當(dāng)每個背包的售價為140元時,月均銷量為980個,售價每增長10元,月均銷量就相應(yīng)減少30個,若使這種背包的月均銷量不低于800個,每個背包售價應(yīng)不高于多少元?
(2)在實際銷售過程中,由于原材料漲價和生產(chǎn)成本增加的原因,每個背包的進(jìn)價為150元,而每個背包的售價比(1)中最高售價減少了a%(a>0),月均銷量比(1)中最低月均銷量800個增加了5a%,結(jié)果該店銷售該背包的月均利潤達(dá)到了40000元,求在實際銷售過程中每個背包售價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了40m,此時自B處測得建筑物頂部的仰角是45°.已知測角儀的高度是1.5m,請你計算出該建筑物的高度.(結(jié)果精確到1m)(參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,經(jīng)過點A的雙曲線y=(x>0)同時經(jīng)過點B,且點A在點B的左側(cè),點A的橫坐標(biāo)為1,∠AOB=∠OBA=45°,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(-1,2),與x軸的一個交點A在點(-3,0)和(-2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2-4ac<0;②當(dāng)x>-1時y隨x增大而減小;③a+b+c<0;④若方程ax2+bx+c-m=0沒有實數(shù)根,則m>2;⑤3a+c<0.其中,正確結(jié)論的序號是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD中,AB⊥AC,AB=1,BC=.對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點E,F.
(1)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(2)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,請直接寫出此時AC繞點O順時針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com