【題目】如圖,AB是⊙O的直徑,AE交⊙O于點F,且與⊙O的切線CD互相垂直,垂足為D.
(1)求證:∠EAC=∠CAB;
(2)若CD=4,AD=8,求⊙O的半徑.
【答案】(1)證明見解析;(2)⊙O的半徑為5.
【解析】試題分析:(1)首先連接OC,由CD是 O的切線,CD⊥OC,又由CD⊥AE,即可判定OC∥AE,根據(jù)平行線的性質(zhì)與等腰三角形的性質(zhì),即可證得∠EAC=∠CAB;
(2)連接BC,易證得△ACD∽△ABC,根據(jù)相似三角形的對應(yīng)邊成比例,即可求得AB的長,繼而可得⊙O的半徑長.
(1)證明:連接OC.
∵CD是⊙O的切線,
∴CD⊥OC,
又∵CD⊥AE,
∴OC∥AE,
∴∠1=∠3,
∵OC=OA,
∴∠2=∠3,
∴∠1=∠2,
即∠EAC=∠CAB;
(2)解:連接BC.
∵AB是⊙O的直徑,CD⊥AE于點D,
∴∠ACB=∠ADC=90°,
∵∠1=∠2,
∴△ACD∽△ABC,
∴,
∵AC2=AD2+CD2=42+82=80,
∴AB==10,
∴⊙O的半徑為10÷2=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣,為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學(xué)生參加的“漢字聽寫大賽”為了解本次大賽的成績,校團委隨機抽取了其中若干名學(xué)生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
成績分 | 頻數(shù)人 | 頻率 |
10 | ||
| 30 | |
| 40 | n |
| m | |
| 50 | |
a | 1 |
請根據(jù)所給信息,解答下列問題:
______,______,______;
補全頻數(shù)直方圖;
這若干名學(xué)生成績的中位數(shù)會落在______分數(shù)段;
若成績在90分以上包括90分的為“優(yōu)”等,請你估計該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB′C′D′,則圖中陰影部分的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)完第五章《相交線與平行線》后,王老師布置了一道兒何證明題如下:“如圖,已知直線AB,CD被直線EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度數(shù).”善于動腦的小軍快速思考,找到了解題方案,并書寫出了如下不完整的解題過程.請你將該題解題過程補充完整:
解:∵∠1=∠2=80°(已知)
∴AB∥CD
∴∠BGF+∠3=180°
∵∠2+∠EFD=180°(鄰補角的定義),
∴∠EFD= °(等式性質(zhì))
∵FG平分∠EFD(已知),
∴∠EFD=2∠3(角平分線的定義)
∴∠3= °(等式性質(zhì))
∴∠BGF= °(等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個坡角為20°的斜坡上有一棵樹,高為AB,當(dāng)太陽光線與水平線成52°角時,測得該樹斜坡上的樹影BC的長為10m,求樹高AB(精確到0.1m) (已知:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin52°≈0.788,cos52°≈0.616,tan52°≈1.280.供選用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓市民享受到更多的優(yōu)惠,相關(guān)部門擬確定一個折扣線,計劃使50%左右的人獲得折扣優(yōu)惠.某市針對乘坐地鐵的人群進行了調(diào)查.調(diào)查小組在各地鐵站隨機調(diào)查了該市1000人上一年乘坐地鐵的月均花費(單位:元),繪制了頻數(shù)分布直方圖,如圖所示.下列說法正確的是( )
①每人乘坐地鐵的月均花費最集中的區(qū)域在80~100元范圍內(nèi);
②每人乘坐地鐵的月均花費的平均數(shù)范圍是40~60元范圍內(nèi);
③每人乘坐地鐵的月均花費的中位數(shù)在60~100元范圍內(nèi);
④乘坐地鐵的月均花費達到80元以上的人可以享受折扣.
A.①②④B.①③④C.③④D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2-(m+2)x+2=0(m≠0)
(1)求證:方程一定有兩個實數(shù)根;
(2)若此方程的兩根為不相等的整數(shù),求整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,直線l3和直線l1,l2交于C、D兩點,點P在直線CD上.
(1)試寫出圖1中∠APB、∠PAC、∠PBD之間的關(guān)系,并說明理由;
(2)如果P點在C、D之間運動時,∠APB、∠PAC、∠PBD之間的關(guān)系會發(fā)生變化嗎?
答: (填發(fā)生或不發(fā)生)
(3)若點P在C、D兩點的外側(cè)運動時(P點與點C、D不重合),如圖2,圖3,試分別寫出∠PAC、∠APB、∠PBD之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣實施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,胡老師為了了解班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對某班部分學(xué)生進行了為期半個月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,胡老師一共調(diào)查了 名同學(xué),其中女生共有 ___名;
(2)將上面的條形統(tǒng)計圖補充完整;
(3)為了共同進步,胡老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com