【題目】完成下面的推理過程.

如圖,ABCDBE、CF分別是∠ABC和∠BCD的平分線.求證:∠E=F

證明:∵ABCD(已知)

∴∠ABC=BCD

BE、CF分別是∠ABC和∠BCD的平分線(已知)

∴∠CBE=ABC,∠BCF=BCD

∴∠CBE=BCF

BECF

∴∠E=F( )

【答案】兩直線平行,內(nèi)錯角相等;角平分線的定義;等量代換;內(nèi)錯角相等,兩直線平行;兩直線平行,內(nèi)錯角相等.

【解析】

根據(jù)平行線的性質和角平分線定義證明∠EBO=FCO,從而證明BECF,進而可證明出結論.

證明:∵ABCD(已知)

∴∠ABC=BCD(兩直線平行,內(nèi)錯角相等

BE、CF分別是∠ABC和∠BCD的平分線(已知)

∴∠CBE=ABC,∠BCE=BCD 角平分線的定義)

∴∠CBE=BCF(等量代換)

BECF(內(nèi)錯角相等,兩直線平行

∴∠E=F(兩直線平行,內(nèi)錯角相等)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是由若干個完全相同的小正方體組成的一個幾何體。

1)圖中有   塊小正方體;

2)請畫出這個幾何體的左視圖和俯視圖;(用陰影表示)

3)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和左視圖不變,那么最多可以再添加幾個小正方體?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)150輛自行車,平均每天生產(chǎn)輛,由于各種原因實際每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負):

星期

增減

1)根據(jù)記錄可知前三天共生產(chǎn) 輛;

2)產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn) 輛;

3)該廠實行計劃工資制,每輛車元,超額完成任務每輛獎元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上任意兩點之間的距離均可用右﹣左表示,即右邊的數(shù)(較大)減去左邊的數(shù)(較。阎獢(shù)軸上兩點A、B對應的數(shù)分別為﹣25,則AB兩點之間的距離記為AB,且AB5﹣(﹣2)=7P為數(shù)軸上的動點,其對應的數(shù)為x

1)若點PA,B兩點的距離相等,寫出點P對應的數(shù);

2)數(shù)軸上是否存在點P,使點PAB兩點的距離之和為11,若存在,請求出x的值;若不存在,請說明理由;

3)若點P在原點,現(xiàn)在AB,P三個點均向左勻速運動,其中點P的速度為每秒1個單位;A,B兩點中有一個點速度與點P的速度一致,另一個點以每秒3單位的速度運動;則幾秒后點PAB兩點的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分類討論是一種非常重要的數(shù)學方法,如果一道題提供的已知條件中包含幾種情況,我們可以分情況討論來求解.例如:已知點A,B,C在一條直線上,若AB=8,BC=3AC長為多少?

通過分析我們發(fā)現(xiàn),滿足題意的情況有兩種:情況當點C在點B的右側時,如圖1,此時,AC=11;

情況②當點C在點B的左側時, 如圖2此時,AC=5.

仿照上面的解題思路,完成下列問題:

問題(1): 如圖,數(shù)軸上點A和點B表示的數(shù)分別是-12,點C是數(shù)軸上一點,且BC=2AB,則點C表示的數(shù)是.

問題(2): 若,的值.

問題(3): 點O是直線AB上一點,以O為端點作射線OC、OD,使,求的度數(shù)(畫出圖形,直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABBCCDAD4,∠DAB=∠B=∠C=∠D90°,E,F分別是邊BC,CD上的點,且CEBC,FCD的中點,問AEF是什么三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《道德經(jīng)》中的道生一,一生二,二生三,三生萬物道出了自然數(shù)的特征,在數(shù)的學習過程中,我們會對其中一些具有某種特性的數(shù)進行研究,如學習自然數(shù)時,我們研究了奇數(shù)、偶數(shù)、質數(shù),合數(shù)等,現(xiàn)在我們來研究另一種特珠的自然數(shù)純數(shù)”.

定義:對于自然數(shù),在計算時,各數(shù)位都不產(chǎn)生進位,則稱這個自然數(shù)純數(shù),例如:32純數(shù),因為計算時,各數(shù)位都不產(chǎn)生進位;23不是純數(shù),因為計算時,個位產(chǎn)生了進位.

1)判斷20192020是否是純數(shù)?請說明理由;

2)求出不大于100純數(shù)的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請根據(jù)圖中提供的信息,回答下列問題:

1)一個水瓶與一個水杯分別是多少元?

2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和nn10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,點、同時從點出發(fā),以相同的速度分別沿折線、射線運動,連接.當點到達點時,點同時停止運動.設,重疊部分的面積為.

1)求長;

2)求關于的函數(shù)關系式,并寫出的取值范圍;

3)請直接寫出為等腰三角形時的值.

查看答案和解析>>

同步練習冊答案