【題目】操作探究:

已知在紙面上有一數(shù)軸(如圖所示)

操作一:

(1)折疊紙面,使表示的點11表示的點重合,則2表示的點與___表示的點重合;

操作二:

(2)折疊紙面,使1表示的點與3表示的點重合,回答以下問題:

5表示的點與數(shù)___表示的點重合;

表示的點與數(shù)___表示的點重合

若數(shù)軸上A. B兩點之間距離為9,(AB的左側(cè)),且A. B兩點經(jīng)折疊后重合,求A. B兩點表示的數(shù)是多少?

操作三:

(3)已知在數(shù)軸上點A表示的數(shù)是a,點A移動4個單位,此時點A表示的數(shù)和a是互為相反數(shù),求a的值。

【答案】12;(2)①-3;②2-, A、B兩點表示的數(shù)分別是3.5,5.5;(3a=22.

【解析】

1)根據(jù)折疊可直接得到答案;

2)由表示-1的點與表示3的點重合,可確定對稱點是表示1的點,則:

①表示5的點與對稱點距離為4,與在左側(cè)與對稱點距離為4的點重合;

②表示的點與對稱點距離為-1,與在左側(cè)與對稱點距離為-1的點重合;由題意可得,A、B兩點距離對稱點的距離為4.5,據(jù)此求解;

3)分當(dāng)A向左移動;當(dāng)A向右移動;兩種情況討論即可求解.

(1)折疊紙面,使表示的點11表示的點重合,則2表示的點與2表示的點重合;

(2)由表示1的點與表示3的點重合,可確定對稱點是表示1的點,則

①表示5的點與對稱點距離為4,則重合點應(yīng)該是左側(cè)與對稱點距離為4的點,即3;

②表示的點與對稱點距離為1,則重合點應(yīng)該是左側(cè)與對稱點距離為的點1,2

由題意可得,A. B兩點距離對稱點的距離為9÷2=4.5

∵對稱點是表示1的點,

AB兩點表示的數(shù)分別是3.5,5.5.

(3)當(dāng)A向左移動時,有a4=a,a=2

當(dāng)A向右移動時,有a+4=a,a=2

綜上所訴,a=22.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,,ACBD交于點F

(1) 如圖1,求證:判斷的形狀并證明你的結(jié)論

(2) 如圖2,若,且,猜想:的數(shù)量關(guān)系并證明

(3) 如圖3,若,點EAD上,,,,則BD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣(x+1)(x﹣3)與x軸交于A、B兩點,與y軸交于點C,點D為該拋物線的對稱軸上一點,當(dāng)點D到直線BC和到x軸的距離相等時,則點D的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD內(nèi),將兩張邊長分別為64的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),矩形中末被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2.當(dāng)AD-AB=2時,S2-S1的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長方形中,,點在邊上,由運(yùn)動,速度為,運(yùn)動時間為秒,將沿著翻折至,點對應(yīng)點為所在直線與邊交與點,

1)如圖,當(dāng)時,求證:;

2)如圖,當(dāng)為何值時,點恰好落在邊上;

3)如圖,當(dāng)時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)新增了一個化工項目,為了節(jié)約資源,保護(hù)環(huán)境,該企業(yè)決定購買AB兩種型號的污水處理設(shè)備共8臺,具體情況如下表:


A

B

價格(萬元/臺)

12

10

月污水處理能力(噸/月)

200

160

經(jīng)預(yù)算,企業(yè)最多支出89萬元購買設(shè)備,且要求月處理污水能力不低于1380噸.

1)該企業(yè)有幾種購買方案?

2)哪種方案更省錢,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的xy的部分對應(yīng)值如下表:

X

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:

⑴ac<0;

⑵當(dāng)x>1時,y的值隨x值的增大而減。

⑶3是方程ax2+(b﹣1)x+c=0的一個根;

⑷當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>0.

其中正確的個數(shù)為(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法中,錯誤的是( 。

A. 拋物線與x軸的一個交點坐標(biāo)為(﹣2,0) B. 拋物線與y軸的交點坐標(biāo)為(0,6)

C. 拋物線的對稱軸是直線x=0 D. 拋物線在對稱軸左側(cè)部分是上升的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在體育測試時,初三的一名高個子男生推鉛球,已知鉛球所經(jīng)過的路線是某二次函數(shù)圖象的一部分(如圖),若這個男生出手處A點的坐標(biāo)為(0,2),鉛球路線的最高處B點的坐標(biāo)為B(65).

(1)求這個二次函數(shù)的表達(dá)式;

(2)該男生把鉛球推出去多遠(yuǎn)?(精確到0.01).

查看答案和解析>>

同步練習(xí)冊答案