【題目】如圖,Rt△ABO中,∠AOB=90°,點A在第一象限,點B在第二象限,且AO:BO=1:2,若經(jīng)過點A的反比例函數(shù)解析式為y=,則經(jīng)過點B(x,y)的反比例函數(shù)解析式為(。
A. B. C. D.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,無論k取何實數(shù),直線y=(k-1)x+4-5k總經(jīng)過定點P,則點P與動點Q(5m-1,5m+1)的距離的最小值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AC為⊙O的直徑,PB是⊙O的切線,B為切點,OP⊥BC,垂足為E,交⊙O于D,連接BD.
(1)求證:BD平分∠PBC;
(2)若PD =3DE,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(閱讀)
如圖1,四邊形OABC中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°,經(jīng)過點O的直線l將四邊形分成兩部分,直線l與OC所成的角設為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點C落在點D處,我們把這個操作過程記為FZ[θ,a].
(理解)
若點D與點A重合,則這個操作過程為FZ[45°,8];
(嘗試)
(1)若點D與OA的中點重合,則這個操作過程為FZ[____,____];
(2)若點D恰為AB的中點(如圖2),求θ的值;
(應用)
經(jīng)過FZ[45°,a]操作,點B落在點E處,若點E在四邊形OABC的邊AB上,直線l與AB相交于點F,試畫出圖形并解決下列問題:
①求出a的值;
②若P為邊OA上一動點,連接PE、PF,請直接寫出PE+PF的最小值.
(備注:等腰直角三角形的三邊關系滿足或)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠工人小王某月工作的部分信息如下:
信息一:工作時間:每天上午8:00~12:00,下午14:00~18:00,每月25天;
信息二:生產(chǎn)甲、乙兩種產(chǎn)品,并且按規(guī)定每月生產(chǎn)甲產(chǎn)品的件數(shù)不少于45件.
生產(chǎn)產(chǎn)品件數(shù)與所用時間之間的關系見下表:
生產(chǎn)甲產(chǎn)品件數(shù)(件) | 生產(chǎn)乙產(chǎn)品件數(shù)(件) | 所用總時間(分) |
10 | 10 | 500 |
15 | 20 | 900 |
信息三:按件計酬,每生產(chǎn)一件甲產(chǎn)品可得6元,每生產(chǎn)一件乙產(chǎn)品可得10元.
根據(jù)以上信息,回答下列問題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分?
(2)小王該月最多能得多少元?此時生產(chǎn)甲、乙兩種產(chǎn)品分別多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小華的爸爸要用一塊矩形鐵皮加工出一個底面半徑為,高為的錐形漏斗,要求只能有一條接縫(接縫忽略不計)
你能求出這個錐形漏斗的側面展開圖的圓心角嗎?
如圖,有兩種設計方案,請你計算一下,哪種方案所用的矩形鐵皮面積較少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,交y軸于點C,點D為拋物線的頂點,連接BD,點H為BD的中點.請解答下列問題:
(1)求拋物線的解析式及頂點D的坐標;
(2)在y軸上找一點P,使PD+PH的值最小,則PD+PH的最小值為 .
(注:拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=﹣,頂點坐標為(﹣,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com