【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,交y軸于點C,點D為拋物線的頂點,連接BD,點HBD的中點.請解答下列問題:

(1)求拋物線的解析式及頂點D的坐標(biāo);

(2)在y軸上找一點P,使PD+PH的值最小,則PD+PH的最小值為   

(注:拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=﹣,頂點坐標(biāo)為(﹣

【答案】(1)函數(shù)的解析式為:y=﹣x2+2x+3,頂點D(1,4);(2).

【解析】

先利用待定系數(shù)法求出函數(shù)的解析式,再連接H′Dy軸交于點P,則PD+PH最小.

(1)∵拋物線y=﹣x2+bx+c過點A(﹣1,0),B(3,0)

解得

∴所求函數(shù)的解析式為:y=﹣x2+2x+3

y=﹣x2+2x+3=﹣(x﹣1)2+4

∴頂點D(1,4)

(2)B(3,0),D(1,4)

∴中點H的坐標(biāo)為(2,2)其關(guān)于y軸的對稱點H′坐標(biāo)為(﹣2,2)

連接H′Dy軸交于點P,則PD+PH最小

且最小值為: =

∴答案:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABO中,∠AOB90°,點A在第一象限,點B在第二象限,且AOBO12,若經(jīng)過點A的反比例函數(shù)解析式為y,則經(jīng)過點Bx,y)的反比例函數(shù)解析式為(。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,AB=m,BC=6,點P為線段AD上任一點

(1)若∠BPC=60°,請在圖中用尺規(guī)作圖畫出符合要求的點P;(保留作圖痕跡,不要求寫作法)

(2)若符合(1)中要求的點P必定存在,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批乒乓球的質(zhì)量檢驗結(jié)果如下:

抽取的乒乓球數(shù)n

200

500

1000

1500

2000

優(yōu)等品頻數(shù)m

188

471

946

1426

1898

優(yōu)等品頻率

0.940

0.942

0.946

0.951

0.949

(1)畫出這批乒乓球優(yōu)等品頻率的折線統(tǒng)計圖;

(2)這批乒乓球優(yōu)等品的概率的估計值是多少?

(3)從這批乒乓球中選擇5個黃球、13個黑球、22個紅球,它們除顏色外都相同,將它們放入一個不透明的袋中.

求從袋中摸出一個球是黃球的概率;

現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個是黃球的概率不小于問至少取出了多少個黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中秋節(jié)前夕,某公司的李會計受公司委派去超市購買若干盒美心月餅,超市給出了該種月餅不同購買數(shù)量的價格優(yōu)惠,如圖,折線ABCD表示購買這種月餅每盒的價格y(元)與盒數(shù)x(盒)之間的函數(shù)關(guān)系.

(1)當(dāng)購買這種月餅盒數(shù)不超過10盒時,一盒月餅的價格為   元;

(2)求出當(dāng)10<x<25時,yx之間的函數(shù)關(guān)系式;

(3)當(dāng)時李會計支付了3600元購買這種月餅,那么李會計買了多少盒這種月餅?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)y=﹣2x2+4x+m+1,與x軸的公共點為A,B.

(1)如果AB重合,求m的值;

(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點:

當(dāng)m=﹣1時,求線段AB上整點的個數(shù);

若設(shè)拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)整點的個數(shù)為n,當(dāng)1<n≤8時,結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)沿一條筆直公路勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離(千米)與甲車行駛的時間t(小時)之間的函數(shù)關(guān)系如圖所示.

(1)A,B兩城相距 千米,乙車比甲車早到 小時;

(2)甲車出發(fā)多長時間與乙車相遇?

(3)若兩車相距不超過20千米時可以通過無線電相互通話,則兩車都在行駛過程中可以通過無線電通話的時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:

數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點是直線上的一點,若在上存在一點,使得智慧三角形,當(dāng)其面積取得最小值時,直接寫出此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,點B、F、C、E在同一直線上,AC、DF相交于點G,ABBE,垂足為B,DEBE,垂足為E,且AC=DF,BF=EC.求證:

(1)ABC≌△DEF;

(2)FG=CG.

查看答案和解析>>

同步練習(xí)冊答案