【題目】甲、乙兩車從A城出發(fā)沿一條筆直公路勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離(千米)與甲車行駛的時間t(小時)之間的函數(shù)關(guān)系如圖所示.
(1)A,B兩城相距 千米,乙車比甲車早到 小時;
(2)甲車出發(fā)多長時間與乙車相遇?
(3)若兩車相距不超過20千米時可以通過無線電相互通話,則兩車都在行駛過程中可以通過無線電通話的時間有多長?
【答案】(1)300千米,1小時(2)2.5小時(3)1小時
【解析】
(1)根據(jù)函數(shù)圖象可以直接得到A,B兩城的距離,乙車將比甲車早到幾小時;
(2)由圖象所給數(shù)據(jù)可求得甲、乙兩車離開A城的距離y與時間t的關(guān)系式,求得兩函數(shù)圖象的交點(diǎn)即可
(3)再令兩函數(shù)解析式的差小于或等于20,可求得t可得出答案.
(1)由圖象可知A、B兩城市之間的距離為300km, 甲比乙早到1小時,
(2)設(shè)甲車離開A城的距離y與t的關(guān)系式為y甲=kt,
把(5,300)代入可求得k=60,
∴y甲=60t,
設(shè)乙車離開A城的距離y與t的關(guān)系式為y乙=mt+n,
把(1,0)和(4,300)代入可得
,
解得:,
∴y乙=100t-100,
令y甲=y乙,可得:60t=100t-100,
解得:t=2.5,
即甲、乙兩直線的交點(diǎn)橫坐標(biāo)為t=2.5,
∴甲車出發(fā)2.5小時與乙車相遇
(3)當(dāng)y甲- y乙=20時
60t-100t+100=20,t=2
當(dāng)y乙- y甲=20時
100t-100-60t=20,t=3
∴3-2=1(小時)
∴兩車都在行駛過程中可以通過無線電通話的時間有1小時
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 的三個頂點(diǎn)坐標(biāo)分別為A(2,-4),B(3,-2), C(6,-3)
①畫出△ABC關(guān)于x軸對稱的△A1B1C1;
②以M點(diǎn)為位似中心,在網(wǎng)格中畫出△A1B1C1的位似圖形△A2B2C2 , 使△A2B2C2與△A1B1C1的相似比為2:1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+2x﹣1.
(1)寫出它的頂點(diǎn)坐標(biāo);
(2)當(dāng)x取何值時,y隨x的增大而增大;
(3)求出圖象與x軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價和售價如下表所示:
A | B | |
進(jìn)價(萬元/套) | 1.5 | 1.2 |
售價(萬元/套) | 1.65 | 1.4 |
該商場計劃購進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。
(毛利潤=(售價 - 進(jìn)價)×銷售量)
(1)該商場計劃購進(jìn)A,B兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進(jìn)數(shù)量,增加B種設(shè)備的購進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購進(jìn)這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購進(jìn)數(shù)量至多減少多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩船從港口A同時出發(fā),甲船以每小時30海里的速度向北偏東35°方向航行,乙船以每小時40海里的速度向另一方向航行,1小時后,甲船到達(dá)C島,乙船達(dá)到B島,若C、B兩島相距50海里,則乙船的航行方向為南偏東多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:,點(diǎn),分別在,上,點(diǎn)為,之間的一點(diǎn),連接,.
(1)如圖1,求證:;
(2)如圖2,,,,分別為,,,的角平分線,求證與互補(bǔ);
圖1. 圖2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC為等腰三角形,O是底邊BC的中點(diǎn),腰AB與⊙O相切于D點(diǎn). 求證:AC是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:線段AB=40cm.
(1)如圖①,點(diǎn)P沿線段AB自點(diǎn)A向點(diǎn)B以3厘米/秒運(yùn)動,同時點(diǎn)Q線段BA自B點(diǎn)向點(diǎn)A以5厘米/秒運(yùn)動,問經(jīng)過幾秒后P、Q相遇?
(2)幾秒鐘后,P、Q相距16厘米?
(3)如圖②,AO=PO=8厘米,∠POB=40°,點(diǎn)P繞點(diǎn)O以20度/秒的速度順時針旋轉(zhuǎn)一周停止,同時點(diǎn)Q沿直線BA自B點(diǎn)向點(diǎn)A運(yùn)動,假若P、Q兩點(diǎn)能相遇,求Q運(yùn)動的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,A、B兩點(diǎn)在數(shù)軸上對應(yīng)的數(shù)分別為﹣12和4.
(1)直接寫出A、B兩點(diǎn)之間的距離;
(2)若在數(shù)軸上存在一點(diǎn)P,使得AP=PB,求點(diǎn)P表示的數(shù).
(3)如圖2,現(xiàn)有動點(diǎn)P、Q,若點(diǎn)P從點(diǎn)A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左運(yùn)動,當(dāng)點(diǎn)Q到達(dá)原點(diǎn)O后立即以每秒3個單位長度的速度沿數(shù)軸向右運(yùn)動,求:當(dāng)OP=4OQ時的運(yùn)動時間t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com