【題目】如圖,邊長(zhǎng)為4的等邊三角形ABC中,E是對(duì)稱(chēng)軸AD上的一個(gè)動(dòng)點(diǎn),連接EC,將線(xiàn)段EC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E運(yùn)動(dòng)過(guò)程中,DF的最小值是______.

【答案】1

【解析】

AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)可得CD=CG,再求出∠DCF=∠GCE,根據(jù)旋轉(zhuǎn)的性質(zhì)可得CE=CF,然后利用邊角邊證明△DCF△GCE全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等可得DF=EG,然后根據(jù)垂線(xiàn)段最短可得EG⊥AD時(shí)最短,再根據(jù)∠CAD=30°求解即可.

解:如圖,取AC的中點(diǎn)G,連接EG,

∵旋轉(zhuǎn)角為60°

∴∠ECD+DCF=60°,

又∵∠ECD+GCE=ACB=60°

∴∠DCF=GCE,

AD是等邊△ABC的對(duì)稱(chēng)軸,

,

CD=CG,

又∵CE旋轉(zhuǎn)到CF,

CE=CF,

在△DCF和△GCE中,

,

∴△DCF≌△GCESAS),

DF=EG,

根據(jù)垂線(xiàn)段最短,EGAD時(shí),EG最短,即DF最短,

此時(shí),,

DF=1.

故答案為:1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組并求其整數(shù)解的和.

解:解不等式①,得_______;

解不等式②,得________;

把不等式①和②的解集在數(shù)軸上表示出來(lái):

原不等式組的解集為________

由數(shù)軸知其整數(shù)解為________,和為________.

在解答此題的過(guò)程中我們借助于數(shù)軸上,很直觀地找出了原不等式組的解集及其整數(shù)解,這就是“數(shù)形結(jié)合的思想”,同學(xué)們要善于用數(shù)形結(jié)合的思想去解決問(wèn)題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,ABAC

1)如圖1,在ADE中,若ADAE,且∠DAE=∠BAC,求證:CDBE;

2)如圖2,在ADE中,若∠DAE=∠BAC60°,且CD垂直平分AE,AD6,CD8,求BD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了科學(xué)建設(shè)學(xué)生健康成長(zhǎng)工程.隨機(jī)抽取了部分學(xué)生家庭對(duì)其家長(zhǎng)進(jìn)行了主題為周末孩子在家您關(guān)心嗎?的問(wèn)卷調(diào)查,將回收的問(wèn)卷進(jìn)行分析整理,得到了如下的樣本統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:

代號(hào)

情況分類(lèi)

家庭數(shù)

帶孩子玩并且關(guān)心其作業(yè)完成情況

16

只關(guān)心其作業(yè)完成情況

b

只帶孩子玩

8

既不帶孩子玩也不關(guān)心其作業(yè)完成情況

d

(1)求的值;

(2)該校學(xué)生家庭總數(shù)為500,學(xué)校決定按比例在類(lèi)家庭中抽取家長(zhǎng)組成培訓(xùn)班,其比例為類(lèi)取20%,類(lèi)各取60%,請(qǐng)你估計(jì)該培訓(xùn)班的家庭數(shù);

(3)若在類(lèi)家庭中只有一個(gè)城鎮(zhèn)家庭,其余是農(nóng)村家庭,請(qǐng)用列舉法求出在類(lèi)中隨機(jī)抽出2個(gè)家庭進(jìn)行深度采訪,其中有一個(gè)是城鎮(zhèn)家庭的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸時(shí),我們發(fā)現(xiàn)有許多重要的規(guī)律:例如,若數(shù)軸上點(diǎn) A , B 表示的數(shù)分別為 a , b ,則 A , B 兩點(diǎn)之間的距離AB=,線(xiàn)段 AB 的中點(diǎn)M 表示的數(shù)為.如圖,在數(shù)軸上,點(diǎn)A,B,C表示的數(shù)分別為-82,20

1)如果點(diǎn)A和點(diǎn)C都向點(diǎn)B運(yùn)動(dòng),且都用了4秒鐘,那么這兩點(diǎn)的運(yùn)動(dòng)速度分別是點(diǎn)A每秒_______個(gè)單位長(zhǎng)度、點(diǎn)C每秒______個(gè)單位長(zhǎng)度;

2)如果點(diǎn)A以每秒1個(gè)單位長(zhǎng)度沿?cái)?shù)軸的正方向運(yùn)動(dòng),點(diǎn)C以每秒3個(gè)單位長(zhǎng)度沿?cái)?shù)軸的負(fù)方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)問(wèn)當(dāng)這兩點(diǎn)與點(diǎn)B距離相等的時(shí)候,t為何值?

3)如果點(diǎn)A以每秒1個(gè)單位長(zhǎng)度沿?cái)?shù)軸的正方向運(yùn)動(dòng),點(diǎn)B以每秒3個(gè)單位長(zhǎng)度沿?cái)?shù)軸的正方向運(yùn)動(dòng),且當(dāng)它們分別到達(dá)C點(diǎn)時(shí)就停止不動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,線(xiàn)段AB的中點(diǎn)為點(diǎn)P;

① t為何值時(shí)PC=12;

② t為何值時(shí)PC=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)課上,老師在屏幕上出示了一個(gè)例題:在△ABC中,D,E分別是ABAC上的一點(diǎn),BECD交于點(diǎn)O,畫(huà)出圖形(如圖),給出下列四個(gè)條件:①∠DBO=∠ECO②∠BDO=∠CEO;③BD=CE④OB=OC

1)要求同學(xué)從這四個(gè)等式中選出兩個(gè)作為已知條件,可判定△ABC是等腰三角形.

請(qǐng)你用序號(hào)在橫線(xiàn)上寫(xiě)出所有情形.答:

2)選擇第(1)題中的一種情形,說(shuō)明△ABC是等腰三角形的理由,并寫(xiě)出解題過(guò)程.

解:我選擇

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)在第一象限,點(diǎn)、的坐標(biāo)分別為,,,直線(xiàn)軸于點(diǎn),若關(guān)于點(diǎn)成中心對(duì)稱(chēng),則點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB,坡面AC的傾斜角為45°.為了方便行人推車(chē)過(guò)天橋,市政部門(mén)決定降低坡度,使新坡面DC的坡度為i=3.若新坡角下需留3米寬的人行道,問(wèn)離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732

查看答案和解析>>

同步練習(xí)冊(cè)答案