【題目】如圖,在正方形中,是對(duì)角線上的一個(gè)動(dòng)點(diǎn),連接,過點(diǎn)作交于點(diǎn).
(1)如圖①,求證:;
(2)如圖②,連接為的中點(diǎn),的延長(zhǎng)線交邊于點(diǎn),當(dāng)時(shí),求和的長(zhǎng);
(3)如圖③,過點(diǎn)作于,當(dāng)時(shí),求的面積.
【答案】(1)見解析;(2);;(3)面積為.
【解析】
(1)過點(diǎn)M作MF⊥AB于F,作MG⊥BC于G,由正方形的性質(zhì)得出∠ABD=∠DBC=45°,由角平分線的性質(zhì)得出MF=MG,證得四邊形FBGM是正方形,得出∠FMG=90°,證出∠AMF=∠NMG,證明△AMF≌△NMG,即可得出結(jié)論;
(2)證明Rt△AMN∽Rt△BCD,得出,求出AN=2,由勾股定理得出BN==4,由直角三角形的性質(zhì)得出OM=OA=ON=AN=,OM⊥AN,證明△PAO∽△NAB,得出,求出OP=,即可得出結(jié)果;
(3)過點(diǎn)A作AF⊥BD于F,證明△AFM≌△MHN得出AF=MH,求出AF=BD=×6=3,得出MH=3,MN=2,由勾股定理得出HN=,由三角形面積公式即可得出結(jié)果.
(1)證明:過點(diǎn)作于,作于,如圖①所示:
,
四邊形是正方形,
,
,
,
,
四邊形是正方形,
,
,
,
,
,
在和中,
,
;
(2)解:在中,由(1)知:,
,
,
,
,
在中,,
,
,
解得:,
在中,,
在中,是的中點(diǎn),
,
,
,
,
,
,即: ,
解得:,
;
(3)解:過點(diǎn)作于,如圖③所示:
,
,
,
,
,
,
,
在和中,
,
,
在等腰直角中,,
,
,
,
,
的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:是長(zhǎng)方形紙片ABCD折疊的情況,紙片的寬度AB=8cm,長(zhǎng)AD=10cm,AD沿點(diǎn)A對(duì)折,點(diǎn)D正好落在BC上的M處,AE是折痕.
(1)求CM的長(zhǎng);
(2)求梯形ABCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一拱橋的橋拱是圓弧形,已知橋拱的水面跨度AB(弧所對(duì)的弦的長(zhǎng))為8米,拱高CD(弧的中點(diǎn)到弦的距離)為2米.
(1)求橋拱所在圓的半徑長(zhǎng);
(2)如果水面AB上升到EF時(shí),從點(diǎn)E測(cè)得橋頂D的仰角為α,且cotα=3,求水面上升的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),已知函數(shù)的圖像和反比例函數(shù)的在第一象限交于A點(diǎn),其中點(diǎn)A的橫坐標(biāo)是1.
(1)求反比例函數(shù)的解析式;
(2)把直線平移后與軸相交于點(diǎn)B,且,求平移后直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B是函數(shù)y=上兩點(diǎn),P為一動(dòng)點(diǎn),作PB∥y軸,PA∥x軸,下列說法:①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,則OP平分∠AOB;④若S△BOP=2,則S△ABP=4,正確有____(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2, 求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:,,,將以上三個(gè)等式兩邊分別相加得:.
(1)觀察發(fā)現(xiàn)
_________;
__________.
(2)初步應(yīng)用
利用(1)的結(jié)論,解決下列問題:
①把拆成兩個(gè)分子為1的正的真分?jǐn)?shù)之差,即__________;
②把拆成兩個(gè)分子為1的正的真分?jǐn)?shù)之和,即__________.
(3)深入探究
定義“◆”是一種新的運(yùn)算,若,,,則計(jì)算的結(jié)果是_________.
(4)拓展延伸
第一次用一條直徑將圓周分成兩個(gè)半圓(如圖),在每個(gè)分點(diǎn)標(biāo)上質(zhì)數(shù),記2個(gè)數(shù)的和為,第二次將兩個(gè)半圓都分成圓,在新產(chǎn)生的分點(diǎn)標(biāo)相鄰的已標(biāo)的兩個(gè)數(shù)的和的,記4個(gè)數(shù)的和為;第三次將四個(gè)圓分成圓,在新產(chǎn)生的分點(diǎn)標(biāo)相鄰的已標(biāo)的兩個(gè)數(shù)的和的,記8個(gè)數(shù)的和為;第四次將八個(gè)圓分成圓,在新產(chǎn)生的分點(diǎn)標(biāo)相鄰的已標(biāo)的兩個(gè)數(shù)的和的,記16個(gè)數(shù)的和為;……如此進(jìn)行了次.
①_________(用含、的代數(shù)式表示);
②,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位計(jì)劃購進(jìn)三種型號(hào)的禮品共件,其中型號(hào)禮品件,型號(hào)禮品比型號(hào)禮品多件.已知三種型號(hào)禮品的單價(jià)如下表:
型號(hào) | |||
單價(jià)(元/件) |
(1)求計(jì)劃購進(jìn)和兩種型號(hào)禮品分別多少件?
(2)實(shí)際購買時(shí),廠家給予打折優(yōu)惠銷售(如: 折指原價(jià),在計(jì)劃總價(jià)額不變的情況下,準(zhǔn)備購進(jìn)這批禮品.
①若只購進(jìn)兩種型號(hào)禮品,且型禮品件數(shù)不超過型禮品的倍,求型禮品最多購進(jìn)多少件?
②若只購進(jìn)兩種型號(hào)禮品,它們的單價(jià)分別打折、折,均為整數(shù),且購進(jìn)的禮品總數(shù)比計(jì)劃多件,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中BC=AC=4,D是斜邊AB上的一個(gè)動(dòng)點(diǎn),把△ACD沿直線CD折疊,點(diǎn)A落在同一平面內(nèi)的A′處,當(dāng)A′D垂直于Rt△ABC的直角邊時(shí),AD的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com