【題目】如圖,點(diǎn)E、F分別是平行四邊形ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1)求證:四邊形AECF為平行四邊形;
(2)若AE=BE,∠BAC=90°,判斷四邊形AECF的形狀并證明.
【答案】(1)證明見解析;(2)四邊形AECF是菱形.
【解析】
試題(1)通過平行四邊形的判定定理“有一組對(duì)邊平行且相等的四邊形是平行四邊形”得出結(jié)論:四邊形AECF為平行四邊形;(2)根據(jù)R△BAC中角與邊間的關(guān)系證得△AEC是等腰三角形,即平行四邊形AECF的鄰邊AE=EC,易證四邊形AECF是菱形.
試題解析:(1)在ABCD中,AD//BC且AD=BC,
∵BE=DF,∴AF=CE.t
∴AF=CE且AF//CE
∴四邊形AECF是平行四邊形.
(2)四邊形AECF是菱形. 理由如下:
∵AE=BE,∴EAB=EBA
∵BAC=900,∴CBA+BCA=900.
∴EAC=BAC. ∴AE="BE=CE" .
∴四邊形AECF是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1經(jīng)過過點(diǎn)P(2,2),分別交x軸、y軸于點(diǎn)A(4,0),B。
(1)求直線l1的解析式;
(2)點(diǎn)C為x軸負(fù)半軸上一點(diǎn),過點(diǎn)C的直線l2:交線段AB于點(diǎn)D。
如圖1,當(dāng)點(diǎn)D恰與點(diǎn)P重合時(shí),點(diǎn)Q(t,0)為x軸上一動(dòng)點(diǎn),過點(diǎn)Q作QM⊥x軸,分別交直線l1、l2于點(diǎn)M、N。若,MN=2MQ,求t的值;
如圖2,若BC=CD,試判斷m,n之間的數(shù)量關(guān)系并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)若數(shù)軸上兩點(diǎn)A、B所表示的數(shù)分別為a和b,則有
①A、B兩點(diǎn)的中點(diǎn)表示的數(shù)為;
②當(dāng)b>a時(shí),A、B兩點(diǎn)間的距離為AB=b﹣a.
(解決問題)數(shù)軸上兩點(diǎn)A、B所表示的數(shù)分別為a和b,且滿足|a+2|+(b﹣8)2020=0
(1)求出A、B兩點(diǎn)的中點(diǎn)C表示的數(shù);
(2)點(diǎn)D從原點(diǎn)O點(diǎn)出發(fā)向右運(yùn)動(dòng),經(jīng)過2秒后點(diǎn)D到A點(diǎn)的距離是點(diǎn)D到C點(diǎn)距離的2倍,求點(diǎn)D的運(yùn)動(dòng)速度是每秒多少個(gè)單位長(zhǎng)度?
(數(shù)學(xué)思考)(3)點(diǎn)E以每秒1個(gè)單位的速度從原點(diǎn)O出發(fā)向右運(yùn)動(dòng),同時(shí),點(diǎn)M從點(diǎn)A出發(fā)以每秒7個(gè)單位的速度向左運(yùn)動(dòng),點(diǎn)N從點(diǎn)B出發(fā),以每秒10個(gè)單位的速度向右運(yùn)動(dòng),P、Q分別為ME、ON的中點(diǎn).思考:在運(yùn)動(dòng)過程中,的值是否發(fā)生變化?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,G、F分別為AD、BC的中點(diǎn),將紙片折疊,使D點(diǎn)落在GF上,得到△HAE,再過H點(diǎn)折疊紙片,使B點(diǎn)落在直線AB上,折痕為PQ.連接AF、EF,已知HE=HF,下列結(jié)論:①△MEH為等邊三角形;②AE⊥EF;③△PHE∽△HAE;④ ,其中正確的結(jié)論是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在《代數(shù)式》的學(xué)習(xí)中,我們通過對(duì)同一面積的不同表達(dá)和比較,得到合并同類項(xiàng)的法則。下面我們利用這種方法來研究速算。
(1)提出問題:47×43,56×54,89×81,……是一些十位數(shù)相同,且個(gè)位數(shù)之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?
(2)幾何建模:
用長(zhǎng)方形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:
(1)畫長(zhǎng)為47,寬為43的矩形,如圖,將這個(gè)47×43的矩形從右邊切下長(zhǎng)40,寬3的一條,拼接到原長(zhǎng)方形上面.
(2)原長(zhǎng)方形面積可以有兩種不同的表達(dá)方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的長(zhǎng)方形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,
(3)模仿應(yīng)用:
①請(qǐng)仿照上面的方法使用長(zhǎng)方形的面積表示56×54的乘積;
②填空:89×81= ×8×100+ × =7209;
(4)歸納提煉:
兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,在等邊△ABC中,點(diǎn)P在△ABC內(nèi),且PA=3,PB=5,PC=4,求∠APC的度數(shù)?
小明在解決這個(gè)問題時(shí),想到了以下思路:如圖2,把△APC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)到點(diǎn)B,得到△ADB,連結(jié)DP.
請(qǐng)你在小明的思路提示下,求出∠APC的度數(shù).
思路應(yīng)用:如圖3,△ABC為等邊三角形,點(diǎn)P在△ABC外,且PA=6,PC=8,∠APC=30°,求PB的長(zhǎng);
思路拓展:如圖4,矩形ABCD中,AB=BC,P為矩形ABCD內(nèi)一點(diǎn),PA:PB:PC=2:1:2,則∠APB= °.(直接填空)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D、E是BC邊上的點(diǎn),BD:DE:EC=3:2:1,M在AC邊上,CM:MA=1:2,BM交AD,AE于H,G,則BH:HG:GM等于( )
A. 4:2:1 B. 5:3:1 C. 25:12:5 D. 51:24:10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017·吉林)如圖①,一個(gè)正方體鐵塊放置在圓柱形水槽內(nèi),現(xiàn)以一定的速度往水槽中注水,28s時(shí)注滿水槽.水槽內(nèi)水面的高度y(cm)與注水時(shí)間x(s)之間的函數(shù)圖象如圖②所示.
(1)正方體的棱長(zhǎng)為 cm;
(2)求線段AB對(duì)應(yīng)的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)如果將正方體鐵塊取出,又經(jīng)過t(s)恰好將此水槽注滿,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的周長(zhǎng)為16,若∠BAD=60°,E是AB的中點(diǎn),則點(diǎn)E的坐標(biāo)為( )
A. (1,1)B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com