【題目】如圖,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四個(gè)結(jié)論①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正確的是(   )

A. ①②③④ B. ①② C. ①③④ D. ①②④

【答案】D

【解析】試題解析:∵AHBC,EFBC
∴①AHEF正確;
BEBF,AHBC,
∴∠ADF=BDH=90°-FBCE=90°-EFB,
EFBC,
∴∠FBC=EFB,

BF平分∠ABC

∴②∠ABF=EFB正確;
因無(wú)法證明ACBF,所以BEAC錯(cuò)誤;

由上述證明易得∠E和∠EFB互余,∠ABE和∠ABF互余,∠EFB=ABF,所以④∠E=ABE正確.
故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1中的長(zhǎng)方形長(zhǎng)為寬的3倍,將四個(gè)這樣的長(zhǎng)方形拼成圖2中的大正方形.

1)若中間小正方形的面積是,問(wèn)圖1中的長(zhǎng)方形的面積是多少

2)若大正方形的面積就比小正方形的面積大,求中間小正方形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),請(qǐng)解決下列問(wèn)題.

(1)填空:點(diǎn)C的坐標(biāo)為(),點(diǎn)D的坐標(biāo)為( , );
(2)設(shè)點(diǎn)P的坐標(biāo)為(a,0),當(dāng)|PD﹣PC|最大時(shí),求α的值并在圖中標(biāo)出點(diǎn)P的位置;
(3)在(2)的條件下,將△BCP沿x軸的正方向平移得到△B′C′P′,設(shè)點(diǎn)C對(duì)應(yīng)點(diǎn)C′的橫坐標(biāo)為t(其中0<t<6),在運(yùn)動(dòng)過(guò)程中△B′C′P′與△BCD重疊部分的面積為S,求S與t之間的關(guān)系式,并直接寫(xiě)出當(dāng)t為何值時(shí)S最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張的爸爸在上周星期六騎摩托車帶小張和弟弟到離家27千米的游樂(lè)園玩耍,爸爸自己騎摩托車的速度為26千米時(shí),由于摩托車后座只能搭乘一人,搭一人的速度為24千米時(shí),當(dāng)天三人同時(shí)從家出發(fā),弟弟以4千米時(shí)的速度步行,爸爸帶小張騎摩托車行駛一定路程后,小張下車以6千米時(shí)的速度步行前往游樂(lè)園,爸爸返回接弟弟,接上弟弟后直接去游樂(lè)園排隊(duì)買票,爸爸花了5分鐘買好票,此時(shí)小張也正好到達(dá)、爸爸騎摩托車掉頭和停放摩托車的時(shí)間忽略不計(jì)問(wèn):小張搭乘摩托車的路程為______千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有2019條直線且有…,則直線的位置關(guān)系是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的文字,解答問(wèn)題:大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),于是小明用1來(lái)表示的小數(shù)部分,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分又例如:因?yàn)?/span>,即23,所以的整數(shù)部分為2,小數(shù)部分為(2

請(qǐng)解答:

1的整數(shù)部分是   ,小數(shù)部分是   ;

2)如果的小數(shù)部分為a,的整數(shù)部分為b,求a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)家有一塊三角形菜地,量得兩邊長(zhǎng)分別為,,第三邊上的高為.請(qǐng)你幫小強(qiáng)計(jì)算這塊菜地的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

(3)-(-2a)4

(4)272=a6=9b,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)E在對(duì)角線AC上,EC=BC=DC.

(1)若∠CBD=39°,求∠BAD的度數(shù);
(2)求證:∠1=∠2.

查看答案和解析>>

同步練習(xí)冊(cè)答案