【題目】(1)如圖1,將矩形ABCD折疊,使BC落在對(duì)角線BD上,折痕為BE,點(diǎn)C落在點(diǎn)C'處,若∠ADB=54°,則∠DBE的度數(shù)為 °.
(2)小明手中有一張矩形紙片ABCD,AB=4,AD=9.(畫一畫)如圖2,點(diǎn)E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為MN(點(diǎn)M,N分別在邊AD,BC上),利用直尺和圓規(guī)畫出折痕MN(不寫作法,保留作圖痕跡,并用黑色水筆把線段MN描清楚);
(3)(算一算)如圖3,點(diǎn)F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線FD上,折痕為GF,點(diǎn)A,B分別落在點(diǎn)A',B'處,若AG=,求B'D的長(zhǎng);
(4)(驗(yàn)一驗(yàn))如圖4,點(diǎn)K在這張矩形紙片的邊AD上,DK=3,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點(diǎn)A,B分別落在點(diǎn)A',B'處,小明認(rèn)為B'I所在直線恰好經(jīng)過點(diǎn)D,他的判斷是否正確,請(qǐng)說明理由.
【答案】(1)27;(2)見解析;(3)3;(4)判斷不正確,見解析
【解析】
(1)利用平行線的性質(zhì)以及翻折不變性即可解決問題;
(2)如圖2中,延長(zhǎng)BA交CE的延長(zhǎng)線由G,作∠BGC的角平分線交AD于M,交BC于N,直線MN即為所求;
(3)首先證明DG=DF,理由勾股定理求出CF,可得BF,再利用翻折不變性,可知FB′=FB,由此即可解決問題;
(4)由△CDK∽△IB′C,推出,即,設(shè)CB′=3k,IB′=4k,IC=5k,由折疊可知,IB=IB′=4k,可知BC=BI+IC=4k+5k=9,推出k=1,推出IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC=,連接ID,在Rt△ICD中,tan∠DIC=,由此即可判斷tan∠B′IC≠tan∠DIC,推出B′I所在的直線不經(jīng)過點(diǎn)D;
解:(1)∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠ADB=∠DBC=54°,
由翻折不變性可知,∠DBE=∠EBC=∠DBC=27°,
故答案為27.
(2)如圖2中,折痕MN為所求:
(3)∵AG=,AD=9,
∴GD=9=,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠DGF=∠BFG,
由翻折不變性可知,∠BFG=∠DFG,
∴∠DFG=∠DGF,
∴DF=DG=,
∵CD=AB=4,∠C=90°,
∴在Rt△CDF中,CF=,
∴BF=BCCF=9-=,
由翻折不變性可知,FB=FB′=,
∴DB′=DFFB′=.
(4)小明的判斷不正確.
理由:如圖4中,連接ID,在Rt△CDK中,∵DK=3,CD=4,
∴CK=,
∵AD∥BC,
∴∠DKC=∠ICK,
由折疊可知,∠A′B′I=∠B=90°,
∴∠IB′C=90°=∠D,
∴△CDK∽△IB′C,
∴,即,
設(shè)CB′=3k,IB′=4k,IC=5k,
由折疊可知,IB=IB′=4k,
∴BC=BI+IC=4k+5k=9,
∴k=1,
∴IC=5,IB′=4,B′C=3,
在Rt△ICB′中,tan∠B′IC=,
連接ID,在Rt△ICD中,tan∠DIC=,
∴tan∠B′IC≠tan∠DIC,
∴∠B′IC≠∠DIC,
∴B′I所在的直線不經(jīng)過點(diǎn)D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售一種進(jìn)價(jià)為每件10元的日用商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量(件)與銷售單價(jià)(元)滿足,設(shè)銷售這種商品每天的利潤(rùn)為(元).
(1)求與之間的函數(shù)關(guān)系式;
(2)在保證銷售量盡可能大的前提下,該商場(chǎng)每天還想獲得2000元的利潤(rùn),應(yīng)將銷售單價(jià)定為多少元?
(3)當(dāng)每天銷售量不少于50件,且銷售單價(jià)至少為32元時(shí),該商場(chǎng)每天獲得的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,AC=2,BC=3.點(diǎn)D為AC的中點(diǎn),聯(lián)結(jié)BD,過點(diǎn)C作CG⊥BD,交AC的垂線AG于點(diǎn)G,GC分別交BA、BD于點(diǎn)F、E.
(1)求GA的長(zhǎng);
(2)求△AFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax+bx+c圖象的一部分,其對(duì)稱軸為x=-1,且過點(diǎn)(-3,0).下列說法:①abc<0;②3a+c=0;③4a+2b+c<0;④若(-5,y1),(,y2)是拋物線上兩點(diǎn),則y1> y2.其中說法正確的是( )
A.①②B.②③C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)了“3D”打印、數(shù)學(xué)史、詩(shī)歌欣賞、陶藝制作四門校本課程,為了解學(xué)生對(duì)這四門校本課程的喜愛情況,對(duì)學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計(jì)圖.
請(qǐng)您根據(jù)圖中提供的信息回答下列問題:
(1)統(tǒng)計(jì)圖中的a= ,b= ;
(2)“D”對(duì)應(yīng)扇形的圓心角為 度;
(3)根據(jù)調(diào)查結(jié)果,請(qǐng)您估計(jì)該校1200名學(xué)生中最喜歡“數(shù)學(xué)史”校本課程的人數(shù);
(4)小明和小亮參加校本課程學(xué)習(xí),若每人從“A”、“B”、“C”三門校本課程中隨機(jī)選取一門,請(qǐng)用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(操作發(fā)現(xiàn))
(1)如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板斜邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=30°,連接AF,EF.
①求∠EAF的度數(shù);
②DE與EF相等嗎?請(qǐng)說明理由;
(類比探究)
(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板另一直角邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=45°,連接AF,EF.請(qǐng)直接寫出探究結(jié)果:
①∠EAF的度數(shù);
②線段AE,ED,DB之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為直線的拋物線經(jīng)過、兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,點(diǎn)在軸上,且.
(1)求該拋物線的表達(dá)式;
(2)設(shè)該拋物線上的一個(gè)動(dòng)點(diǎn)的橫坐標(biāo)為.
①當(dāng)時(shí),求四邊形的面積與的函數(shù)關(guān)系式,并求出的最大值;
②點(diǎn)在直線上,若以為邊,點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)左),與軸交于點(diǎn),連接,點(diǎn)為二次函數(shù)圖象上的動(dòng)點(diǎn).
(1)若的面積為3,求拋物線的解析式;
(2)在(1)的條件下,若在軸上存在點(diǎn),使得,求點(diǎn)的坐標(biāo);
(3)若為對(duì)稱軸右側(cè)拋物線上的動(dòng)點(diǎn),直線交軸于點(diǎn),直線交軸于點(diǎn),判斷的值是否為定值,若是,求出定值,若不是請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn).
(1)畫出關(guān)于軸的對(duì)稱圖形,并寫出點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo);
(2)若點(diǎn)在軸上,連接、,則的最小值是 ;
(3)若直線軸,與線段、分別交于點(diǎn)、(點(diǎn)不與點(diǎn)重合),若將沿直線翻折,點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),當(dāng)點(diǎn)落在的內(nèi)部(包含邊界)時(shí),點(diǎn)的橫坐標(biāo)的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com