【題目】如圖,已知的直徑、的三等分點(diǎn),、上兩點(diǎn),且,求的值.

【答案】

【解析】

延長(zhǎng)ME交⊙OG,根據(jù)圓的中心對(duì)稱性可得FN=EG,過(guò)點(diǎn)OOHMGH,連接MO,根據(jù)圓的直徑求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根據(jù)垂徑定理可得MG=2MH,從而得解.

如圖,延長(zhǎng)ME交⊙OG,


EFAB的三等分點(diǎn),∠MEB=NFB=60°,
FN=EG,
過(guò)點(diǎn)OOHMGH,連接MO,
∵⊙O的直徑AB=6
OE=OA-AE=×6-×6=3-2=1,
OM=×6=3
∵∠MEB=60°,
OH=OEsin60°=1×=
RtMOH中,MH= =
根據(jù)垂徑定理,MG=2MH=2×=,
EM+FN=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的對(duì)角線相交于點(diǎn),且,過(guò)點(diǎn)于點(diǎn),若的周長(zhǎng)為20,則的周長(zhǎng)為( )

A. 7B. 8C. 9D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在RtABC中,∠ACB90°,AC6cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線BAC路線勻速運(yùn)動(dòng)到C停止,動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿折線CBA路線勻速運(yùn)動(dòng)到A停止,如點(diǎn)P、Q同時(shí)出發(fā)運(yùn)動(dòng)t秒后,如圖(2)是△BPC的面積S1cm2)與t(秒)的函數(shù)關(guān)系圖象,圖(3)是△AQC的面積S2cm2)與t(秒)的函數(shù)關(guān)系圖象:

1)點(diǎn)P運(yùn)動(dòng)速度為   cm/秒;Q運(yùn)動(dòng)的速度   cm/秒;

2)連接PQ,當(dāng)t為何值時(shí),PQBC;

3)如圖(4)當(dāng)運(yùn)動(dòng)t0t2)秒時(shí),是否存在這樣的時(shí)刻,使以PQ為直徑的ORtABC的一條邊相切,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為2,則a的值是( )

A. 2B. 2+2C. 2D. 2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B,有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放若干個(gè)無(wú)蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).當(dāng)豎直擺放圓柱形桶至少( )個(gè)時(shí),網(wǎng)球可以落入桶內(nèi).

A.7B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在O中,PA是直徑,PC是弦,PH平分∠APB且與O交于點(diǎn)H,過(guò)HHBPCPC的延長(zhǎng)線于點(diǎn)B

1)求證:HBO的切線;

2)若HB4BC2,求O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們縣是紫菜生產(chǎn)大縣,某景點(diǎn)商戶向游客推銷一種加工好的優(yōu)質(zhì)紫菜,已知每千克成本為20.市場(chǎng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),該產(chǎn)品銷售量(千克)與銷售單價(jià)(元/千克)的變化而變化有如下關(guān)系式:.設(shè)這種紫菜在這段時(shí)間內(nèi)的銷售利潤(rùn)為(元).

1)求的關(guān)系式;

2)當(dāng)銷售價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

3)如果物價(jià)部門規(guī)定該景區(qū)這種紫菜的銷售單價(jià)不得高于28/千克,該商戶每天能否獲得比150元更大的利潤(rùn)?如果能請(qǐng)求出最大利潤(rùn),如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),無(wú)人機(jī)航拍測(cè)量的應(yīng)用越來(lái)越廣泛.如圖,無(wú)人機(jī)從A處觀測(cè)得某建筑物頂點(diǎn)O時(shí)俯角為30°,繼續(xù)水平前行10米到達(dá)B處,測(cè)得俯角為45°,已知無(wú)人機(jī)的水平飛行高度為45米,則這棟樓的高度是多少米?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸分別交于,兩點(diǎn).

1)求拋物線的表達(dá)式;

2)在第二象限內(nèi)取一點(diǎn),作垂直軸于點(diǎn),連結(jié),且.將沿軸向右平移個(gè)單位,當(dāng)點(diǎn)落在拋物線上時(shí),求的值;

3)在(2)的條件下,當(dāng)點(diǎn)第一次落在拋物線上時(shí)記為點(diǎn),點(diǎn)是拋物線對(duì)稱軸上一點(diǎn).試探究:在拋物線上是否存在點(diǎn),使以點(diǎn)、、為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案