【題目】環(huán)保局對某企業(yè)排污情況進行檢測,結果顯示,所排污水中硫化物的濃度超標,即硫化物的濃度超過最高允許的,環(huán)保局要求該企業(yè)立即整改,在15天以內(含15天)排污達標,整改過程中,所排污水中硫化物的濃度與時間(天)的變化規(guī)律如圖所示,其中線段表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度與時間成反比例關系

1)求整改過程中硫化物的濃度與時間的函數(shù)表達式(要求標注自變量的取值范圍)

2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(含15天)排污達標?為什么?

【答案】1)①當時,;②當時,;(2)能;理由見解析.

【解析】

1)分情況討論:①當0≤x≤3時,設線段AB對應的函數(shù)表達式為y=kx+b;把A0,10),B3,4)代入得出方程組,解方程組即可;②當x3時,設y=,把(3,4)代入求出m的值即可;

2)令y==1,得出x=1231215,即可得出結論.

解:(1)分情況討論:

①當時,

設線段對應的函數(shù)表達式為;

代入得:

解得:,

;

②當時,設

把(3,4)代入得:

;

綜上所述:當時, ;當時,;

2)能;理由如下:

,則,

,

故能在15天以內不超過最高允許的

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是置于水平地面上的一個球形儲油罐,小敏想測量它的半徑、在陽光下,他測得球的影子的最遠點A到球罐與地面接觸點B的距離是10(如示意圖,AB10);同一時刻,他又測得豎直立在地面上長為1米的竹竿的影子長為2米,那么,球的半徑是________米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一座古拱橋的截面圖拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m,橋洞與水面

的最大距離是5m

1經過討論,同學們得出三種建立平面直角坐標系的方案如下圖

你選擇的方案是_____填方案一,方案二,或方案三),B點坐標是______求出你所選方案中的拋物線的表達式;

2因為上游水庫泄洪水面寬度變?yōu)?/span>6m,求水面上漲的高度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果點D、E分別在ABC中的邊ABAC上,那么不能判定DEBC的比例式是( 。

A. ADDBAEEC B. DEBCADAB

C. BDABCEAC D. ABACADAE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB6,AD8,點E是邊AD上一點,EMBCAB于點M,點N在射線MB上,且AEAMAN的比例中項.

1)如圖1,求證:∠ANE=∠DCE;

2)如圖2,當點N在線段MB之間,聯(lián)結AC,且ACNE互相垂直,求MN的長;

3)連接AC,如果AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,一次函數(shù)為常數(shù),)的圖像與軸、軸分別相交于點,半徑為4的⊙軸正半軸相交于點,與軸相交于點,點在點上方.

1)若直線與弧有兩個交點.

①求的度數(shù);

②用含的代數(shù)式表示,并直接寫出的取值范圍;

2)設,在線段上是否存在點,使?若存在,請求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是弧AB所對弦AB上一動點,過點PPCABAB于點P,作射線AC交弧AB于點D.已知AB=6cm,PC=1cm,設A,P兩點間的距離為xcm,A,D兩點間的距離為ycm.(當點P與點A重合時,y的值為0)

小平根據(jù)學習函數(shù)的經驗,分別對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小平的探究過程,請補充完整:

(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了yx的幾組對應值;

x/cm

0

1

2

3

4

5

6

y1/cm

0

4.24

5.37

m

5.82

5.88

5.92

經測量m的值是   (保留一位小數(shù)).

(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(x,y),并畫出函數(shù)y的圖象;

(3)結合函數(shù)圖象,解決問題:當∠PAC=30°,AD的長度約為   cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AC、BD交于點O,AD=15,AO=12.動點P以每秒2個單位的速度從點A出發(fā),沿AC向點C勻速運動.同時,動點Q以每秒1個單位的速度從點D出發(fā),沿DB向點B勻速運動.當其中有一點列達終點時,另一點也停止運動,設運動的時間為t秒.

(1)求線段DO的長;

(2)設運動過程中△POQ兩直角邊的和為y,請求出y關于x的函數(shù)解析式;

(3)請直接寫出點P在線段OC上,點Q在線段DO上運動時,△POQ面積的最大值,并寫出此時的t值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點ORtABC斜邊AB上的一點,以OA為半徑的⊙OBC切于點D,與AC交于點E,連接AD

1)求證:AD平分∠BAC;

2)若∠BAC60°,OA2,求陰影部分的面積(結果保留π).

查看答案和解析>>

同步練習冊答案