【題目】如圖,平面直角坐標系中,一次函數(shù)為常數(shù),)的圖像與軸、軸分別相交于點,半徑為4的⊙軸正半軸相交于點,與軸相交于點,點在點上方.

1)若直線與弧有兩個交點.

①求的度數(shù);

②用含的代數(shù)式表示,并直接寫出的取值范圍;

2)設,在線段上是否存在點,使?若存在,請求出點坐標;若不存在,請說明理由.

【答案】1)①45°;②,();(2b=5時存在,點P的坐標為,

b>5時,直線與圓相離,不存在P,理由見解析.

【解析】

1)連接CD,EA,利用同一條弦所對的圓周角相等求行∠CFE=45°,
2)作OMABM,連接OF,利用兩條直線垂直相交求出交點M的坐標,利用勾股定理求出FM2,再求出FG2,再根據(jù)式子寫出b的范圍,
3)當b=5時,直線與圓相切,存在點P,使∠CPE=45°,再利用APO∽△AOBAMP∽△AOB相似得出點P的坐標,.

解:(1)①如圖,

,(圓周角定理)

②方法一:

如圖,作,連接

,直線的函數(shù)式為:

所在的直線函數(shù)式為:,

∴交點

,

,

,

∵直線與弧有兩個交點,

,

,(

方法二:

如圖,作于點,連接

∵直線的函數(shù)式為:,

的坐標為,的坐標為

,

,

,

,

∴在中,

,

,

∵直線與弧有兩個交點,

,

,(

2)如圖,

時,直線與圓相切,

∵在直角坐標系中,,

∴存在點,使,

連接

是切點,

,

,

,,

,即

,

于點,設的坐標為,

,

,

,

∴點的坐標為,

時,直線與圓相離,不存在.

故答案為:(145°;(2,();(3b=5時存在,點P的坐標為

b>5時,直線與圓相離,不存在P,理由見解析.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖的矩形ABCD中,EAB的中點,有一圓過C、D、E三點,且此圓分別與AD、BC相交于P、Q兩點.甲、乙兩人想找到此圓的圓心O,其作法如下:

() 作∠DEC的角平分線L,作DE的中垂線,交LO點,則O即為所求;

() 連接PC、QD,兩線段交于一點O,則O即為所求.

對于甲、乙兩人的作法,下列判斷何者正確?(  )

A. 兩人皆正確 B. 兩人皆錯誤

C. 甲正確,乙錯誤 D. 甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,拋物線經(jīng)過點,.軸上一動點,過點且垂直于軸的直線分別交直線及拋物線于點,.

1)填空:點的坐標為_________,拋物線的解析式為_________;

2)當點在線段上運動時(不與點,重合),

①當為何值時,線段最大值,并求出的最大值;

②求出使為直角三角形時的值;

3)若拋物線上有且只有三個點到直線的距離是,請直接寫出此時由點,,構成的四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點DABC的外部,ADBC,點E在邊AB上,ABADBCAE

1)求證:∠BAC=∠AED;

2)在邊AC取一點F,如果∠AFE=∠D,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】環(huán)保局對某企業(yè)排污情況進行檢測,結果顯示,所排污水中硫化物的濃度超標,即硫化物的濃度超過最高允許的,環(huán)保局要求該企業(yè)立即整改,在15天以內(含15天)排污達標,整改過程中,所排污水中硫化物的濃度與時間(天)的變化規(guī)律如圖所示,其中線段表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度與時間成反比例關系

1)求整改過程中硫化物的濃度與時間的函數(shù)表達式(要求標注自變量的取值范圍)

2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(含15天)排污達標?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,點DBC中點,AEBCCEAD

(1)求證:四邊形ADCE是菱形;

(2)過點DDFCE于點F,∠B=60°,AB=6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】濟南某中學在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.

請根據(jù)以上信息,回答下列問題:

(l)楊老師采用的調查方式是   (填“普查”或“抽樣調查”);

(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應的圓心角度數(shù)   

(3)請估計全校共征集作品的什數(shù).

(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+3經(jīng)過A(﹣3,0)、B(1,0)兩點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合).

(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;

(2)如圖1,過點PPEy軸于點E.求PAE面積S的最大值;

(3)如圖2,拋物線上是否存在一點Q,使得四邊形OAPQ為平行四邊形?若存在求出Q點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的弦,OP⊥OAAB于點P,過點B的直線交OP的延長線于點C,且CP=CB

1)求證:BC⊙O的切線;

2)若⊙O的半徑為,OP=1,求BC的長.

查看答案和解析>>

同步練習冊答案