【題目】已知a+b=3,ab=2,則a2b+ab2=

【答案】6
【解析】解:∵a+b=3,ab=2,
∴a2b+ab2=ab(a+b)=6.
所以答案是:6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°AC=4,BC=2PAB邊上一動點,PD⊥AC于點D,點EP的右側(cè),且PE=1,連結(jié)CEP從點A出發(fā),沿AB方向運動,當(dāng)E到達點B時,P停止運動.在整個運動過程中,圖中陰影部分面積S1+S2的大小變化情況是( )

A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】單項式﹣3πa2b的系數(shù)與次數(shù)分別是( 。

A. 3,4 B. ﹣34 C. ,4 D. ﹣3π,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果x=1是關(guān)于x的方程﹣x+a=3x﹣2的解,則a的值為( 。

A. 1 B. ﹣1 C. 2 D. ﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援四川抗震救災(zāi),某省某市A、B、C三地分別有賑災(zāi)物資100噸、100噸、80噸,需要全部運往四川重災(zāi)區(qū)的甲、乙兩縣.根據(jù)災(zāi)區(qū)的情況,這批賑災(zāi)物資運往甲縣的數(shù)量比運往乙縣的數(shù)量的2倍少20噸.

(1)求這批賑災(zāi)物資運往甲、乙兩縣的數(shù)量各是多少噸?

(2)若要求C地運往甲縣的賑災(zāi)物資為60噸,A地運往甲縣的賑災(zāi)物資為x噸(x為整數(shù)),B地運往甲縣的賑災(zāi)物資數(shù)量少于A地運往甲縣的賑災(zāi)物資數(shù)量的2倍,其余的賑災(zāi)物資全部運往乙縣,且B地運往乙縣的賑災(zāi)物資數(shù)量不超過25噸.則A、B兩地的賑災(zāi)物資運往甲、乙兩縣的方案有幾種?

(3)已知A、B、C三地的賑災(zāi)物資運往甲、乙兩縣的費用如表:

A

B

C

運往甲縣的費用(元/噸)

220

200

200

運往乙縣的費用(元/噸)

250

220

210

為及時將這批賑災(zāi)物資運往甲、乙兩縣,某公司主動承擔(dān)運送這批物資的總費用,在(2)的要求下,該公司承擔(dān)運送這批賑災(zāi)物資的總費用最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級同學(xué)到距學(xué)校6千米的郊外秋游,一部分同學(xué)步行,另一部分同學(xué)騎自行車,沿相同路線前往,如圖,L1L2分別表示步行和騎車的同學(xué)前往目的地所走的路程y(千米)與所用時間x(分鐘)之間的函數(shù)關(guān)系,則以下判斷錯誤的是( )

A. 騎車的同學(xué)比步行的同學(xué)晚出發(fā)30分鐘

B. 騎車的同學(xué)和步行的同學(xué)同時到達目的地

C. 騎車的同學(xué)從出發(fā)到追上步行的同學(xué)用了20分鐘

D. 步行的速度是6千米/小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.

(1)求拋物線的解析式;

(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O(shè)、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標(biāo);

(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得OBP與OAB相似?若存在,求出P點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD,OACBD的交點,過點O的直線EFBA,DC的延長線分別交于點E,F.

(1)求證:AOE≌△COF.

(2)請連接EC,AF,EFAC滿足什么條件時,四邊形AECF是矩形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分?jǐn)?shù)m進行分組統(tǒng)計,結(jié)果如表所示:

組號

分組

頻數(shù)

6≤m<7

2

7≤m<8

7

8≤m<9

a

9≤m≤10

2

(1)求a的值.

(2)若用扇形統(tǒng)計圖來描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對應(yīng)的扇形的圓心角的度數(shù).

(3)將在第一組內(nèi)的兩名選手記為A1,A2,在第四組內(nèi)的兩名選手記為B1,B2, 從第一組和第四組中隨機選取2名選手進行調(diào)研座談,求第一組至少有1名選手被選中的概率.

查看答案和解析>>

同步練習(xí)冊答案