已知:如圖,拋物線y=a(x-1)2+c與x軸交于點(diǎn)A(1-,0)和點(diǎn)B,將拋物線沿x軸向上翻折,頂點(diǎn)P落在點(diǎn)P'(1,3)處.

(1)求原拋物線的解析式;
(2)學(xué)校舉行班徽設(shè)計(jì)比賽,九年級(jí)5班的小明在解答此題時(shí)頓生靈感:過(guò)點(diǎn)P'作x軸的平行線交拋物線于C、D兩點(diǎn),將翻折后得到的新圖象在直線CD以上的部分去掉,設(shè)計(jì)成一個(gè)“W”型的班徽,“5”的拼音開(kāi)頭字母為W,“W”圖案似大鵬展翅,寓意深遠(yuǎn);而且小明通過(guò)計(jì)算驚奇的發(fā)現(xiàn)這個(gè)“W”圖案的高與寬(CD)的比非常接近黃金分割比.請(qǐng)你計(jì)算這個(gè)“W”圖案的高與寬的比到底是多少?
(1)y=(x﹣1)2﹣3 (2)“W”圖案的高與寬(CD)的比為

試題分析:解:(1)∵P與P′(1,3)關(guān)于x軸對(duì)稱,
∴P點(diǎn)坐標(biāo)為(1,﹣3);     
∵拋物線y=a(x﹣1)2+c過(guò)點(diǎn)A(,0),頂點(diǎn)是P(1,﹣3),
;
解得;
則拋物線的解析式為y=(x﹣1)2﹣3,
即y=x2﹣2x﹣2.
(2)∵CD平行x軸,P′(1,3)在CD上,
∴C、D兩點(diǎn)縱坐標(biāo)為3;         
由(x﹣1)2﹣3=3,
解得:,,
∴C、D兩點(diǎn)的坐標(biāo)分別為(,3),(,3)
∴CD=
∴“W”圖案的高與寬(CD)的比=
點(diǎn)評(píng):難度中等,主要考查二次函數(shù)的解析式和應(yīng)用,根據(jù)已知的兩點(diǎn)坐標(biāo)是解題關(guān)鍵。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC= 4cm.D、E分別為邊AB、BC的中點(diǎn),連結(jié)DE.點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在線段AD上以cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M在直線AQ上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).

(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為     cm(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分的面積為S(cm2),求S與t的函數(shù)關(guān)系式.
(4)連結(jié)CD.當(dāng)點(diǎn)N與點(diǎn)D重合時(shí),有一點(diǎn)H從點(diǎn)M出發(fā),在線段MN上以2.5cm/s的速度沿M-N-M連續(xù)做往返運(yùn)動(dòng),直至點(diǎn)P與點(diǎn)E重合時(shí),點(diǎn)H停止往返運(yùn)動(dòng);當(dāng)點(diǎn)P在線段EB上運(yùn)動(dòng)時(shí),點(diǎn)H始終在線段MN的中點(diǎn)處.直接寫(xiě)出在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中,點(diǎn)H落在線段CD上時(shí)t的值(或取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+2x+3與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).

(1)求直線AC的解析式及B、D兩點(diǎn)的坐標(biāo);
(2)點(diǎn)Px軸上一個(gè)動(dòng)點(diǎn),過(guò)P作直線lAC交拋物線于點(diǎn)Q,試探究:隨著P點(diǎn)的運(yùn)動(dòng),在拋物線上是否存在點(diǎn)Q,使以點(diǎn)A、PQ、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)請(qǐng)?jiān)谥本AC上找一點(diǎn)M,使△BDM的周長(zhǎng)最小,求出M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,ABC中,∠A=90º,AB=2㎝,AC=4㎝,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以1㎝/s的速度向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),沿BA方向以1㎝s的速度向帶你A運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).以AP為一邊向上作正方形APDE,過(guò)點(diǎn)Q作QF∥BC,交AC于點(diǎn)F,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t s,正方形APDE和梯形BCFQ重合部分的面積為S.

(1)當(dāng)t=         s時(shí),點(diǎn)P與點(diǎn)Q重合;
(2)當(dāng)t=         s時(shí),點(diǎn)D在QF上;
(3)當(dāng)點(diǎn)P在Q、B兩點(diǎn)之間(不包括Q、B兩點(diǎn))時(shí),求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列二次函數(shù)中,圖象以直線x=2為對(duì)稱軸、且經(jīng)過(guò)點(diǎn)(0,1)的是( 。
A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)的圖象如圖所示,試確定的符號(hào);             0,
             0.(填不等號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若拋物線的頂點(diǎn)坐標(biāo)是(1,16),并且拋物線與軸兩交點(diǎn)間的距離為8,(1)試求該拋物線的關(guān)系式;
(2)求出這條拋物線上縱坐標(biāo)為12的點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,坐標(biāo)系上有A(2,0)、B(4,0)兩點(diǎn).二次函數(shù)的圖象經(jīng)過(guò)這兩點(diǎn)

(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為P,拋物線向上或向下平移多少個(gè)單位,則△ABP是正三角形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

銷(xiāo)售甲、乙兩種商品所得利潤(rùn)分別為y1(萬(wàn)元)和y2(萬(wàn)元),它們與投入資金u的關(guān)系式為y1,y2u.如果將3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,其中對(duì)甲商品的投資為x(萬(wàn)元).
(1)求經(jīng)營(yíng)甲、乙兩種商品的總利潤(rùn)y(萬(wàn)元)與x的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;
(2)設(shè)=t,試寫(xiě)出y關(guān)于t的函數(shù)關(guān)系式,并求出經(jīng)營(yíng)甲、乙兩種商品各投入多少萬(wàn)元時(shí)使得總利潤(rùn)最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案