【題目】法國數(shù)學(xué)家柯西于1813年在拉格朗日、高斯的基礎(chǔ)上徹底證明了《費馬多邊形數(shù)定理》,其主要突破在“五邊形數(shù)”的證明上.如圖為前幾個“五邊形數(shù)”的對應(yīng)圖形,請據(jù)此推斷,第10個“五邊形數(shù)”應(yīng)該為( 。2018個“五邊形數(shù)”的奇偶性為( 。
A. 145;偶數(shù) B. 145;奇數(shù) C. 176;偶數(shù) D. 176;奇數(shù)
【答案】B
【解析】
仔細觀察所給的圖形,找出圖形中蘊含的規(guī)律,根據(jù)所得的規(guī)律即可解答.
∵第1個“五邊形數(shù)”為1,1=×12﹣×1,
第2個“五邊形數(shù)”為5,5=×22﹣×2,
第3個“五邊形數(shù)”為12,12=×32﹣×3,
第4個“五邊形數(shù)”為22,22=×42﹣×4,
第5個“五邊形數(shù)”為35,35=×52﹣×5,
…
∴第n個“五邊形數(shù)”為n2﹣n,
將n=10代入,得第10個“五邊形數(shù)”為×102﹣×10=145,
當(dāng)n=2018時,n2=3×2018×1009,是偶數(shù),n=1009是奇數(shù),所以n2﹣n是奇數(shù).
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為1的正方形OABC的頂點A在X軸的正半軸上,如圖將正方形OABC繞頂點O順時針旋轉(zhuǎn)75°得正方形OABC,使點B恰好落在函數(shù)y=ax2(a<0)的圖像上,
則a的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D在AB上,點E在AC上,BE、CD相交于點O.
(1)三角形的外角等于與它不相鄰的兩個內(nèi)角的______,若∠A=45°,∠B=30°,則∠BEC=______;
(2)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度數(shù);
(3)試猜想∠BOC與∠A、∠B、∠C之間的關(guān)系,并證明你猜想的正確性。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx+n交坐標軸分別于A,B(0,1)兩點,交雙曲線y=于點C(2,2),點D在直線AB上,AC=2CD.過點D作DE⊥x軸于點E,交雙曲線y=于點F,連接CF.
(1)求反比例函數(shù)y=和直線y=mx+n的表達式;
(2)求△CDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與
OD的延長線交于點P,PC、AB的延長線交于點F.
(1)求證:PC是⊙O的切線;
(2)若∠ABC=60°,AB=10,求線段CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地2015年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2017年在2015年的基礎(chǔ)上增加投入資金1600萬元.
(1)從2015年到2017年,該地投入異地安置資金的年平均增長率為多少?
(2)在2017年異地安置的具體實施中,該地計劃投入資金不低于500萬元用于優(yōu)先搬遷租房獎勵,規(guī)定前1000戶(含第1000戶)每戶每天獎勵8元,1000戶以后每戶每天獎勵5元,按租房400天計算,求2017年該地至少有多少戶享受到優(yōu)先搬遷租房獎勵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細閱讀下面材料,然后解決問題:在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”.例如:,;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”,例如:,.我們知道,假分數(shù)可以化為帶分數(shù),例如:=2+=2,類似的,假分式也可以化為“帶分式”(整式與真分式和的形式),例如:=1+.
(1)將分式化為帶分式;
(2)當(dāng)x取哪些整數(shù)值時,分式的值也是整數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片 ABCD,使AD落在BD上,點A恰好與BD上的點F重合.展開后,折痕DE分別交AB、 AC于點E、G.連接GF.則下列結(jié)論錯誤的是( )
A. ∠AGD=112.5° B. 四邊形AEFG是菱形 C. tan∠AED=2 D. BE=2OG
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com