【題目】如圖,∠AOB=90°,在∠AOB的內(nèi)部有一條射線OC.
(1)畫射線OD⊥OC.
(2)寫出此時(shí)∠AOD與∠BOC的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)(2)∠AOD=∠BOC;或∠AOB+∠COD=180°.理由見解析
【解析】
試題分析:(1)根據(jù)垂線的定義,可得答案;
(2)根據(jù)余角的性質(zhì),可得答案;根據(jù)角的和差,可得答案.
解:(1)如圖:
,;
(2)如圖1:
,
∠AOD=∠BOC.
因?yàn)?/span>∠AOB=90°,
所以∠AOC+∠BOC=90°.
因?yàn)?/span>OD⊥OC,
所以∠AOD+∠AOC=90°.
所以∠AOD=∠BOC;
如圖2:
,
∠AOD+∠BOC=180°.
因?yàn)?/span>∠AOD=∠AOC+∠BOC+∠BOD,
所以∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC
=∠AOB+∠COD=180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明用自制的直角三角形紙板DEF測(cè)量樹AB的高度,他調(diào)整自己的位置,使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上,已知紙板的兩條直角邊DE=40 cm,EF=20 cm,測(cè)得邊DF離地面的高度AC=1.5 m, CD=10 m,請(qǐng)你幫小明求下樹的高度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)P(5,5),點(diǎn)B、A分別在x軸、y軸正半軸上,且∠APB=90°,則OA+OB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】到三角形的三個(gè)頂點(diǎn)距離相等的點(diǎn)是( )
A.三條角平分線的交點(diǎn)
B.三條中線的交點(diǎn)
C.三條高的交點(diǎn)
D.三條邊的垂直平分線的交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),OD平分∠AOC,∠DOE=90°.
(1)若∠AOC=50°,求出∠BOD的度數(shù);
(2)試判斷OE是否平分∠BOC,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)等腰三角形其中兩邊的長(zhǎng)分別是2和6,則它的周長(zhǎng)為______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長(zhǎng);
(2)在直線AC的同側(cè),以點(diǎn)O為位似中心,作出△CON的位似三角形,并使△CON與和它位似的三角形的位似比是1:2.(寫出結(jié)果,不寫作法,保留作圖痕跡).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com