【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:①∠EBG=45°;②AG+DF=FG;③△DEF∽△ABG;④S△ABG= S△FGH . 其中正確的是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】C
【解析】解:∵△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上, 將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,
∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,
∴∠EBG=∠EBF+∠FBG= ∠CBF+ ∠ABF= ∠ABC=45°,所以①正確;
在Rt△ABF中,AF= =8,
∴DF=AD﹣AF=10﹣8=2,
設(shè)AG=x,則GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,
在Rt△GFH中,∵GH2+HF2=GF2 ,
∴x2+42=(8﹣x)2 , 解得x=3,
∴GF=5,
∴AG+DF=FG=5,所以②正確;
∵△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處
∴∠BFE=∠C=90°,
∴∠EFD+∠AFB=90°,
而∠AFB+∠ABF=90°,
∴∠ABF=∠EFD,
∴△ABF∽△DFE,
∴ ,
∴ ,
而 =2,
∴ ,
∴△DEF與△ABG不相似;所以③錯(cuò)誤.
∵S△ABG= ×6×3=9,S△GHF= ×3×4=6,
∴S△ABG=1.5S△FGH . 所以④正確.
故選C
【考點(diǎn)精析】本題主要考查了翻折變換(折疊問(wèn)題)和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過(guò)的時(shí)間t(單位:s)之間的關(guān)系如下表:
t | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
h | 0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列結(jié)論:①足球距離地面的最大高度為20m;②足球飛行路線的對(duì)稱軸是直線t= ;③足球被踢出9s時(shí)落地;④足球被踢出1.5s時(shí),距離地面的高度是11m,其中正確結(jié)論的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AD=8cm,AB=6cm.動(dòng)點(diǎn)E從點(diǎn)C開始沿邊CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)C同時(shí)出發(fā)沿邊CD向點(diǎn)D以1cm/s的速度運(yùn)動(dòng)至點(diǎn)D停止.如圖可得到矩形CFHE,設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),此時(shí)矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小軍同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
月均用水量(單位:t) | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 | ||
5≤x<6 | 10 | 20% |
6≤x<7 | 12% | |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請(qǐng)你通過(guò)樣本估計(jì)總體中的中等用水量家庭大約有多少戶?
(3)從月均用水量在2≤x<3,8≤x<9這兩個(gè)范圍內(nèi)的樣本家庭中任意抽取2個(gè),求抽取出的2個(gè)家庭來(lái)自不同范圍的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過(guò)點(diǎn)B的直線MN∥AC,D為BC邊上一點(diǎn),連接AD,作DE⊥AD交MN于點(diǎn)E,連接AE.
(1)如圖①,當(dāng)∠ABC=45°時(shí),求證:AD=DE;
(2)如圖②,當(dāng)∠ABC=30°時(shí),線段AD與DE有何數(shù)量關(guān)系?并請(qǐng)說(shuō)明理由;
(3)當(dāng)∠ABC=α?xí)r,請(qǐng)直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】林叢同學(xué)調(diào)查了全班50名同學(xué)分別喜歡相聲、小品、歌曲、舞蹈節(jié)目的情況,并制成下面的統(tǒng)計(jì)表:
最喜歡的節(jié)目類型 | 劃記 | 人數(shù) | 百分比 |
相聲 | 正 | 13 | 26% |
小品 | 正正正一 | 21 | 42% |
歌曲 | 正正 | 10 | 28% |
舞蹈 | 正一 | 6 | 12% |
在上表所給的數(shù)據(jù)中,僅有一類節(jié)目的統(tǒng)計(jì)是完全正確的,則該項(xiàng)目統(tǒng)計(jì)類別是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)與一次函數(shù)y=kx+6 交于點(diǎn)C(2,4 ),一次函數(shù)圖象與兩坐標(biāo)軸分別交于點(diǎn)A和點(diǎn)B,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿OA以相同的速度向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0<t≤6),以點(diǎn)P為圓心,PA為半徑的⊙P與AB交于點(diǎn)M,與OA交于點(diǎn)N,連接MN、MQ.
(1)求m與k的值;
(2)當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)N重合;
(3)若△MNQ的面積為S,試求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BEC=95°,∠ABE=120°,∠DCE=35°,則AB與CD平行嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,,AB的垂直平分線交AB于D,交AC于點(diǎn)E,連接BE,∠EBC=45°,DE=3,求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com