【題目】關于x的分式方程=1的解是正數(shù),則m的取值范圍是_____.
【答案】m<1
【解析】試題分析:去分母得:2x+m=x-2,
解得:x=-m-2,
∵關于x的方程=1的解是正數(shù),
∴-m-2>0,
解得m<-2,
又∵x=-m-2≠2,
∴m≠-4,
∴m的取值范圍是:m<-2且m≠-4.
故答案為:m<-2且m≠-4.
點睛:此題主要考查了分式方程的解,要熟練掌握,解答此題的關鍵是要明確:在解方程的過程中因為在把分式方程化為整式方程的過程中,擴大了未知數(shù)的取值范圍,可能產生增根,增根是令分母等于0的值,不是原分式方程的解.
【題型】填空題
【結束】
18
【題目】若關于x的分式方程 無解,則m的值為_______.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b和反比例函數(shù)y= 的圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出方程kx+b﹣ =0的解;
(3)求△AOB的面積;
(4)觀察圖象,直接寫出不等式kx+b﹣ <0的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD中,點O是對角線AC的中點,P是對角線AC上一動點,過點P作PF⊥CD于點F.如圖1,當點P與點O重合時,顯然有DF=CF.
(1)如圖2,若點P在線段AO上(不與點A、O重合),PE⊥PB且PE交CD于點E.
①求證:DF=EF;
②寫出線段PC、PA、CE之間的一個等量關系;并說出理由;
(2)若點P在線段OC上(不與點O、C重合),PE⊥PB且PE交直線CD于點E.請完成圖3并判斷(1)中的結論①、②是否分別成立?若不成立,寫出相應的結論.(所寫結論均不必證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用一條長為18cm的細繩圍成一個等腰三角形.
(1)如果腰長是底邊長的2倍,求三角形各邊的長;
(2)能圍成有一邊的長是4cm的等腰三角形嗎?若能,求出其他兩邊的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在甲、乙兩名同學中選拔一人參加“中華好詩詞”大賽,在相同的測試條件下,兩人5次測試成績(單位:分)如下:
甲:79,86,82,85,83
乙:88,79,90,81,72.
回答下列問題:
(1)甲成績的平均數(shù)是 , 乙成績的平均數(shù)是;
(2)經(jīng)計算知S甲2=6,S乙2=42.你認為選拔誰參加比賽更合適,說明理由;
(3)如果從甲、乙兩人5次的成績中各隨機抽取一次成績進行分析,求抽到的兩個人的成績都大于80分的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1) (2)
(3) (4)
【答案】(1) ;(2) ;(3) ; (4)
【解析】試題分析:(1)分子、分母分解因式后約分即可;
(2)先通分計算括號內分式的減法,然后把除法轉化為乘法,分子、分母分解因式后約分即可;
(3)第二個分式分子、分母分解因式后約分,然后通分轉化為同分母分式,最后依照同分母分式的加減法則計算即可;
(4)先通分計算括號內分式的減法,然后把除法轉化為乘法,分子、分母分解因式后約分即可.
試題解析:
解:(1)原式=
=;
(2)原式=
=
=;
(3)原式=
=
=
=
=;
(4)原式=
=
=.
點睛:此題考查了分式的混合運算,熟練掌握運算法則和運算順序是解本題的關鍵.
【題型】解答題
【結束】
20
【題目】解分式方程:
(1) (2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校“瀝園文學”社成員來自初一、初二、初三三個年級的學生,其人數(shù)比為2:3:5,如圖所示的扇形圖表示上述分布情況.已知來自初一的學生為10人,則下列說法不正確的是( 。
A. 扇形甲的圓心角是72° B. 學生的總人數(shù)是90人
C. 初三的人數(shù)比初二的人數(shù)多10人 D. 初一的人數(shù)比初三的人數(shù)少15人
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為更好的治理水質,保護環(huán)境,市治污辦事處預購買10臺污水處理設備,現(xiàn)有A、B兩種型號的設備,其中價格及污水處理量如下表:
A型 | B型 | |
價格(萬元) | a | b |
處理污水量(噸/月) | 240 | 200 |
詢問商家得知:購買一臺A型設備比購買一臺B型設備多2萬元,購買2臺A型設備比購買3臺B型設備少6萬元,根據(jù)以上條件.
(1)求a、b的值;
(2)市污水處理辦公室由于資金缺乏,購買污水處理設備的資金最多105萬元,你認為該有幾種購買方案?
(3)在(2)的情況下,若每月污水處理量要求不低于2040噸,為節(jié)約資金,請你幫污水處理辦事處選取一種最省錢的方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com