【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,將紙片沿AD折疊,直角邊AC恰好落在斜邊上,且與AE重合,則△BDE的面積為cm2

【答案】6
【解析】解:∵AC=6cm,BC=8cm, ∴AB=10cm,
∵AE=6cm(折疊的性質),
∴BE=4cm,
設CD=DE=x,則在Rt△DEB中,42+x2=(8﹣x)2 ,
解得x=3,
即DE等于3cm.
∴△BDE的面積= ×4×3=6,
所以答案是:6,
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀以下材料:

2017年1月28日至2月1日農歷正月初一至初五,平谷區(qū)政府在占地面積6萬平方米的琴湖公園舉辦主題為“逛平谷廟會樂百姓生活”的平谷區(qū)首屆春節(jié)廟會.

本次廟會共設置了文藝展演區(qū)、非遺展示互動區(qū)、特色商品區(qū)、兒童娛樂游藝區(qū)、特色美食區(qū)等五個不同主題的展區(qū).展區(qū)總面積1720平方米.文藝展演區(qū)占地面積600平方米,占展區(qū)總面積的34.9%;非遺展示區(qū)占地190平方米,占展區(qū)總面積的11.0%;特色商品區(qū)占地面積是文藝展演區(qū)的一半,占展區(qū)總面積的17.4%;特色美食區(qū)占地200平方米,占展區(qū)總面積的11.6%;還有孩子們喜愛的兒童娛樂游藝區(qū).

此次廟會本著弘揚、挖掘、展示平谷春節(jié)及民俗文化,以京津冀不同地域的特色文化為出發(fā)點,全面展示平谷風土人情及津冀人文特色.大年初一,來自全國各地的約3.2萬人踏著新春的腳步,揭開了首屆平谷廟會的帷幕.大年初二盡管天氣寒冷,市民逛廟會熱情不減,又約有4.3萬人次參觀了廟會,品嘗特色美食,觀看綠都古韻、秧歌表演、天橋絕活,一路猜燈謎、賞圖片展,場面火爆.琳瑯滿目的泥塑、木版畫、剪紙、年畫等民俗作品也讓游客愛不釋手,紛紛購買.大年初三,單日接待游客約4萬人次,大年初四風和日麗的天氣讓廟會進入游園高峰,單日接待量較前日增長了約50%.大年初五,活動進入尾聲,但廟會現(xiàn)場仍然人頭攢動,仍約有5.5萬人次來園參觀.

(1)直接寫出扇形統(tǒng)計圖中m的值;

(2)初四這天,廟會接待游客量約_______萬人次;

(3)請用統(tǒng)計圖或統(tǒng)計表,將廟會期間每日接待游客的人數(shù)表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若直線AB與直線CD交于點O,OA平分∠COF,OE⊥CD.
(1)寫出圖中與∠EOB互余的角;
(2)若∠AOF=30°,求∠BOE和∠DOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學騎車去郊游,如圖表示他離家的距離y(km)與所用時間x(h)之間的關系圖象:
(1)根據(jù)圖象回答:小明到達離家最遠的地方需幾小時?此時離家多遠?
(2)求小明出發(fā)2.5h離家多遠?
(3)小明出發(fā)多長時間距離家12km?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張長方形的紙片ABCD沿AF折疊,點B到達點B′的位置.已知AB′∥BD,∠ADB=20°,則∠BAF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點(﹣2,3)所在的象限是(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,將點(2,-3)關于原點的對稱點向左平移2個單位長度得到的點的坐標是()

A. (4,-3) B. (-4,3) C. (-4,-3) D. (0,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一個方格的邊長為1個單位長度,三角形MNQ是三角形ABC經過某種變換后得到的圖形.

(1)請分別寫出點A與點M,點B與點N,點C與點Q的坐標;
(2)已知點P是三角形ABC內一點,其坐標為(﹣3,2),利用上述對應點之間的關系,寫出三角形MNQ中的對應點R的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,對角線AC、BD相交于點F,點E是邊BC延長線上一點,且∠CDE=ABDDB=DE。

(1)求證:四邊形ACED是平行四邊形;

(2)聯(lián)結AE,交BD于點G,求證:

查看答案和解析>>

同步練習冊答案