【題目】如圖,將一張長方形的紙片ABCD沿AF折疊,點B到達點B′的位置.已知AB′∥BD,∠ADB=20°,則∠BAF=

【答案】55°
【解析】解:∵長方形紙片ABCD沿AF折疊,使B點落在B′處, ∴∠B′AF=∠BAF,
∵AB′∥BD,
∴∠B′AD=∠ADB=20°,
∴∠B′AB=20°+90°=110°,
∴∠BAF=110°÷2=55°.
∴∠BAF應為55°時,才能使AB′∥BD.
所以答案是:55°.
【考點精析】解答此題的關鍵在于理解平行線的性質(zhì)的相關知識,掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為反比例函數(shù)y= 的圖像上一點,PA⊥x軸于點A,△PAO的面積為6,則下列各點中也在這個反比例函數(shù)圖像上的是(
A.(2,3)
B.(﹣2,6)
C.( 2,6 )
D.(﹣2,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)(a2)3·(a3)2÷(a2)5;

(2)(a-b+c)(a+b-c).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,水庫大壩截面的迎水坡坡比(DE與AE的長度之比)為5:3,背水坡坡比為1:2,大壩高DE=30m,壩頂寬CD=10m,求大壩的截面面積和周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只跳蚤在第一象限及x軸、y軸上跳動,在第一秒鐘,它從原點跳動到(0,1),然后接著按圖中箭頭所示方向跳動,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒跳動一個單位,那么第35秒時跳蚤所在位置的坐標是( )

A.(4,0)
B.(5,0)
C.(0,5)
D.(5,5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,將紙片沿AD折疊,直角邊AC恰好落在斜邊上,且與AE重合,則△BDE的面積為cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長都為1,△ABC在網(wǎng)格中的位置如圖所示,△ABC的三個頂點都在格點上.
(1)寫出△ABC三個頂點的坐標;
(2)將點A,B,C的橫坐標都乘以﹣1,縱坐標不變,分別得到點A1 , B1 , C1 , 在圖中找到點A1 , B1 , C1 , 并順次連接A1 , B1 , C1得到△A1B1C1 , 則這兩個三角形關于對稱;
(3)若以點A,C,P為頂點的三角形與△ABC全等,直接寫出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點A(﹣1,0),B(0,﹣3).
(1)求:直線AB的表達式;
(2)直接寫出直線AB向下平移2個單位后得到的直線表達式;
(3)求:在(2)的平移中直線AB在第三象限內(nèi)掃過的圖形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:(5a2﹣2a)﹣2(3a+2a2),其中a=﹣2.

查看答案和解析>>

同步練習冊答案