【題目】某商店銷(xiāo)售一種成本為的水產(chǎn)品,若按銷(xiāo)售,一個(gè)月可售出,售價(jià)毎漲元,月銷(xiāo)售量就減少

寫(xiě)出月銷(xiāo)售利潤(rùn)(元)與售價(jià)(元)之間的函數(shù)表達(dá)式;

當(dāng)售價(jià)定為多少元時(shí),該商店月銷(xiāo)售利潤(rùn)為元?

當(dāng)售價(jià)定為多少元時(shí)會(huì)獲得最大利潤(rùn)?求出最大利潤(rùn).

【答案】(1)y;(2)當(dāng)售價(jià)定為元或元時(shí),該商店月銷(xiāo)售利潤(rùn)為元;

當(dāng)售價(jià)為元,利潤(rùn)最大,最大利潤(rùn)是元.

【解析】

(1)根據(jù)月銷(xiāo)售利潤(rùn)=每千克的利潤(rùn)×數(shù)量就可以表示出月銷(xiāo)售利潤(rùn)y(單位:元)與售價(jià)x(單位:元/千克)之間的函數(shù)解析式;
(2)當(dāng)y=8000時(shí),代入(1)的解析式求出結(jié)論即可,
(3)將(1)的解析式化為頂點(diǎn)式就可以求出結(jié)論.

解:(1)由題意,得
y=(x-40)[500-10(x-50)],
y=-10x2+1400x-40000=
答:y與x之間的函數(shù)關(guān)系式為:y=-10x2+1400x-40000;
(2)由題意,得
8000=-10x2+1400x-40000,
解得:x1=60,x2=80.

答:銷(xiāo)售單價(jià)應(yīng)定為80元;
(3)∵y=-10x2+1400x-40000.
∴y=-10(x-70)2+9000.
∴a=-10<0,y有最大值.
∴當(dāng)x=70時(shí).y最大=9000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3x軸于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0).

(1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;

(2)如圖2,該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為F,點(diǎn)D(2,3)在該拋物線上.

①求四邊形ACFD的面積;

②點(diǎn)P是線段AB上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),過(guò)點(diǎn)PPQx軸交該拋物線于點(diǎn)Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時(shí),求出所有滿足條件的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形紙片ABCD,P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A,點(diǎn)D重合),將正方形紙片折疊,使點(diǎn)B落在點(diǎn)P處,點(diǎn)C落在點(diǎn)G處,PG交DC于點(diǎn)H,折痕為EF,連接BP,BH.BH交EF于點(diǎn)M,連接PM.下列結(jié)論:①BE=PE;②EF=BP;③PB平分∠APG;④MH=MF;⑤BP=BM,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知有兩輛玩具車(chē)進(jìn)行30米的直跑道比賽,兩車(chē)從起點(diǎn)同時(shí)出發(fā),A車(chē)到達(dá)終點(diǎn)時(shí),B車(chē)離終點(diǎn)還差12米,A車(chē)的平均速度為2.5/秒.

1)求B車(chē)的平均速度;

2)如果兩車(chē)重新比賽,A車(chē)從起點(diǎn)退后12米,兩車(chē)能否同時(shí)到達(dá)終點(diǎn)?請(qǐng)說(shuō)明理由;

3)在(2)的條件下,若調(diào)整A車(chē)的平均速度,使兩車(chē)恰好同時(shí)到達(dá)終點(diǎn),求調(diào)整后A車(chē)的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)軸的交點(diǎn)為,(點(diǎn)在點(diǎn)的左側(cè)),與軸的交點(diǎn)為,頂點(diǎn)部分為,若點(diǎn)是四邊形邊上的點(diǎn),則的最大值為(

A. -6 B. -8 C. -12 D. -18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠1=∠2,若添加一個(gè)條件后,仍無(wú)法判定ABC≌△ABD的是( 。

A.3=∠4B.C=∠DC.BCBDD.ACAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中∠ABC=90°,AC的垂直平分線交BCD點(diǎn),交ACE點(diǎn),OC=OD.

(1)若,DC=4,求AB的長(zhǎng);

(2)連接BE,若BEDEC的外接圓的切線,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB=30°,OP平分AOBPDOBD,PCOBOAC,若PC=6,則PD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)DAB的中點(diǎn),點(diǎn)EAB邊上一點(diǎn).

1)直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG;

2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長(zhǎng)線于點(diǎn)M(如圖2),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案