【題目】如圖,AB是⊙O的直徑,CD在⊙O上,且BC=CD,過點CCEAD,交AD延長線于E,交AB延長線于F點.若AB=4ED,則cosABC的值是( )

A. B. C. D.

【答案】A

【解析】

先證明△CDE∽△ABC得到對應(yīng)邊成比例,由AB=4DEBC=CD得到BC=AB,從而求出cosABC=

連接OCAC

CEAD,
∴∠EAC+ECA=90°
OC=OA,
∴∠OCA=OAC
又∵BC=CD,
∴∠OAC=EAC
∴∠OCA=EAC,
∴∠ECA+OCA=90°
EF是⊙O的切線,
∴∠ECD=EAC
又∵BC=CD,
∴∠EAC=BAC
∴∠ECD=BAC,
又∵AB是直徑,
∴∠BCA=90°,
在△BAC和△DCE中,
BCA=DEC=90°
ECD=CAB,
∴△CDE∽△ABC
,
又∵AB=4DECD=BC,

BC=AB,
cosABC= =
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線相交于AB兩點,且點A1,-4)為拋物線的頂點,點Bx軸上。

1)求拋物線的解析式;

2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB△POC全等?若存在,求出點P的坐標(biāo);若不存在,請說明理由;

3)若點Qy軸上一點,且△ABQ為直角三角形,求點Q的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在ABC中,AD是高,矩形PQMN的頂點PN分別在AB、AC上,QM在邊BC上.若BC8cm,AD6cm

1PN2PQ,求矩形PQMN的周長

2)當(dāng)PN為多少時矩形PQMN的面積最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓底右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點BC,E在同一水平直線上).已知AB=80m,DE=20m,求障礙物B,C兩點間的距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,BC的延長線與AD的延長線交于點E,且DC=DE.

1)求證:∠A=AEB.

2)連接OE,交CD于點F,OECD,求證:ABE是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yax22ax1(a是常數(shù),a≠0),下列結(jié)論正確的是( )

A. 當(dāng)a1,函數(shù)圖象過點(1,1)

B. 當(dāng)a=-2,函數(shù)圖象與x軸沒有交點

C. a>0,則當(dāng)x≥1,yx的增大而減小

D. a<0,則當(dāng)x≤1,yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)興趣小組的活動中,小明進(jìn)行數(shù)學(xué)探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當(dāng)點B恰好落在線段DG上時,請你幫他求出此時BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】西瓜經(jīng)營戶以2元/千克的價格購進(jìn)一批小型西瓜,以3元/千克的價格出售,每天可售出200千克,為了促銷,該經(jīng)營戶決定降價銷售,經(jīng)調(diào)查發(fā)現(xiàn),這種小型西瓜每降價01元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元.

(1)設(shè)銷售單價為每千克a,每天平均獲利為y,請解答下列問題:

①每天平均銷售量可以表示為_____;

②每天平均銷售額可以表示為_____;

③每天平均獲利可以表示為y=______;

(2) 該經(jīng)營戶要想每天盈利200元,應(yīng)將每千克小型西瓜的售價降多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,過點A作AE⊥CD,AE分別與CD、CB相交于點H、E,AH=2CH.

(1)求sinB的值;

(2)如果CD=,求BE的值.

查看答案和解析>>

同步練習(xí)冊答案