【題目】醫(yī)學(xué)上某種還沒(méi)有完全攻克的疾病,治療時(shí)需要通過(guò)藥物控制其中的兩項(xiàng)指標(biāo)H和V.現(xiàn)有..三種不同配方的藥劑,根據(jù)分析,A,B,C三種藥劑能控制H指標(biāo)的概率分別為0.5,0.6,0.75,能控制V指標(biāo)的概率分別是0.6,0.5,0.4,能否控制H指標(biāo)與能否控制V指標(biāo)之間相互沒(méi)有影響. (Ⅰ)求A,B,C三種藥劑中恰有一種能控制H指標(biāo)的概率;
(Ⅱ)某種藥劑能使兩項(xiàng)指標(biāo)H和V都得到控制就說(shuō)該藥劑有治療效果.求三種藥劑中有治療效果的藥劑種數(shù)X的分布列.

【答案】解:(Ⅰ)A,B,C三種藥劑中恰有一種能控制H指標(biāo)的概率為:

=0.5×(1﹣0.6)×(1﹣0.75)+(1﹣0.5)×0.6×(1﹣0.75)+(1﹣0.5)×(1﹣0.6)×0.75=0.275.
(Ⅱ)∵A有治療效果的概率為PA=0.5×0.6=0.3,
B有治療效果的概率為PB=0.6×0.5=0.3,
C有治療效果的概率為PC=0.75×0.4=0.3,
∴A,B,C三種藥劑有治療效果的概率均為0.3,可看成是獨(dú)立重復(fù)試驗(yàn),即X~B(3,0.3),
∵X的可能取得為0,1,2,3,
,
,
,
,

故X的分布列為:

X

0

1

2

3

P

0.343

0.441

0.189

0.027


【解析】(Ⅰ)利用相互獨(dú)立事件概率乘法公式、互斥事件概率加法公式能求出A,B,C三種藥劑中恰有一種能控制H指標(biāo)的概率.(Ⅱ)求出A,B,C三種藥劑有治療效果的概率均為0.3,可看成是獨(dú)立重復(fù)試驗(yàn),即X~B(3,0.3),由此能求出X的分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一扇窗戶垂直打開(kāi),即OMOP , AC是長(zhǎng)度不變的滑動(dòng)支架,其中一端固定在窗戶的點(diǎn)A處,另一端C在OP上滑動(dòng),將窗戶OM按圖示方向向內(nèi)旋轉(zhuǎn)37°到達(dá)ON位置,此時(shí),點(diǎn)A、C的對(duì)應(yīng)位置分別是點(diǎn)B、D.測(cè)量出∠ODB為28°,點(diǎn)D到點(diǎn)O的距離為30cm

(1)求B點(diǎn)到OP的距離;
(2)求滑動(dòng)支架的長(zhǎng).(結(jié)果精確到0.1)(數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53,sin 53°≈0.8,cos53°≈0.6,tan53°≈1.33)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,a﹣b=bcosC.
(1)求證:sinC=tanB;
(2)若a=1,C為銳角,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x|+|x﹣3|.
(1)解關(guān)于x的不等式f(x)﹣5≥x;
(2)設(shè)m,n∈{y|y=f(x)},試比較mn+4與2(m+n)的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4月23人是“世界讀書(shū)日”,某中學(xué)在此期間開(kāi)展了一系列的讀書(shū)教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱(chēng)為“讀書(shū)謎”,低于60分鐘的學(xué)生稱(chēng)為“非讀書(shū)謎”
(1)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書(shū)謎”與性別有關(guān)?

非讀書(shū)迷

讀書(shū)迷

合計(jì)

15

45

合計(jì)


(2)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中,用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中的“讀書(shū)謎”的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣1|,(m>0),且f(x+1)≥0的解集為[﹣3,3]. (Ⅰ)求m的值;
(Ⅱ)若正實(shí)數(shù)a,b,c滿足 ,求證:a+2b+3c≥3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若對(duì)任意的實(shí)數(shù)a,函數(shù)f(x)=(x﹣1)lnx﹣ax+a+b有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)b的取值范圍是(
A.(﹣∞,﹣1]
B.(﹣∞,0)
C.(0,1)
D.(0,+∞)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=|x+a|,g(x)=|x+3|﹣x,記關(guān)于x的不等式f(x)<g(x)的解集為M.
(1)若a﹣3∈M,求實(shí)數(shù)a的取值范圍;
(2)若[﹣1,1]M,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果關(guān)于x的分式方程 ﹣3= 有負(fù)分?jǐn)?shù)解,且關(guān)于x的不等式組 的解集為x<﹣2,那么符合條件的所有整數(shù)a的積是(  )
A.﹣3
B.0
C.3
D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案