【題目】試通過(guò)畫(huà)圖來(lái)判定,下列說(shuō)法正確的是( )
A. 一個(gè)直角三角形一定不是等腰三角形 B. 一個(gè)等腰三角形一定不是銳角三角形
C. 一個(gè)鈍角三角形一定不是等腰三角形 D. 一個(gè)等邊三角形一定不是鈍角三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀與思考:整式乘法與因式分解是方向相反的變形,由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用這個(gè)式子可以將某些二次項(xiàng)系數(shù)是1的二次三項(xiàng)式分解因式,例如:將式子x2﹣x﹣6分解因式.這個(gè)式子的常數(shù)項(xiàng)﹣6=2×(﹣3),一次項(xiàng)系數(shù)﹣1=2+(﹣3),這個(gè)過(guò)程可用十字相乘的形式形象地表示:先分解常數(shù)項(xiàng),分別寫(xiě)在十字交叉線的左上角和左下角;再分解常數(shù)項(xiàng),分別寫(xiě)在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項(xiàng)系數(shù).如圖所示.這種分解二次三項(xiàng)式的方法叫“十字相乘法”,請(qǐng)同學(xué)們認(rèn)真觀察,分析理解后,解答下列問(wèn)題.
(1)分解因式:x2+7x﹣18.
(2)填空:若x2+px﹣8可分解為兩個(gè)一次因式的積,則整數(shù)p的所有可能值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是( )
A.(6,0) B.(6,3) C.(6,5) D.(4,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到△A′B′C′,若∠BAC=90°,AB=AC=2,則圖中陰影部分的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】情境觀察:
如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點(diǎn)F.
①寫(xiě)出圖1中所有的全等三角形 ;
②線段AF與線段CE的數(shù)量關(guān)系是 .
問(wèn)題探究:
如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點(diǎn)E.
求證:AE=2CD.
拓展延伸:
如圖3,△ABC中,∠BAC=45°,AB=BC,點(diǎn)D在AC上,∠EDC=∠BAC,DE⊥CE,垂足為E,DE與BC交于點(diǎn)F.求證:DF=2CE.
要求:請(qǐng)你寫(xiě)出輔助線的作法,并在圖3中畫(huà)出輔助線,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圖1、圖2、圖3都是4×5的方格紙,其中每個(gè)小正方形的邊長(zhǎng)均為1cm,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).
(1)在圖1的方格紙中畫(huà)出一個(gè)三邊均為無(wú)理數(shù)的直角三角形,使它的頂點(diǎn)都在格點(diǎn)上;
(2)在圖2的方格紙中畫(huà)出一個(gè)面積為10cm2的正方形,使它的頂點(diǎn)都在格點(diǎn)上;
(3)將圖3的長(zhǎng)方形方格紙剪拼成一個(gè)與它面積相等的正方形,在圖3中畫(huà)出裁剪線(線段),在備用圖中畫(huà)出拼接好的正方形示意圖及拼接線,并且使正方形的頂點(diǎn)都在格點(diǎn)上.
說(shuō)明:備用圖是一張8×8的方格紙,其中小正方形的邊長(zhǎng)也為1cm,每個(gè)小正方形的頂點(diǎn)也稱為格點(diǎn).只設(shè)計(jì)一種剪拼方案即可.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】O為直線DA上一點(diǎn),OB⊥OF,EO是∠AOB的平分線.
(1)如圖(1),若∠AOB=130°,求∠EOF的度數(shù);
(2)若∠AOB=α,90°<α<180°,求∠EOF的度數(shù);
(3)若∠AOB=α,0°<α<90°,請(qǐng)?jiān)趫D(2)中畫(huà)出射線OF,使得(2)中∠EOF的結(jié)果仍然成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC且BD>CD,DF⊥AB,△CDE和△ADB都是等腰直角三角形,給出下列結(jié)論,正確的是
①△ADC≌△BDE;
②△ADF≌△BDF;
③△CDE≌△AFD;
④△ACE≌ABE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com